Posts

Using Biosolids to Revegetate Inactive Mine Tailings

Vale Canada (a global mining company with an integrated mine, mill, smelter, and refinery complex in operations Sudbury, Ontario) has been working with Terrapure Environmental (an industrial waste management company) to utilize biosolids on its main tailings area.

For over 100 years, tailings from the milling operation have been deposited in the Copper Cliff Central Tailings impoundment. The facility is still active, but approximately 1,300 hectares are inactive and need reclamation work.

The Big Nickel in Sudbury (Photo Credit: pizzodisevo)

Over the decades, Vale has had some success in revegetation of its tailings area, but there are still large areas of bare or sparsely vegetated tailings, which have led to wind-erosion-management challenges. To control dust, Vale uses agricultural equipment to cover the tailings with straw or hay, as well as a chemical dust suppressant. These practices are costly, and they have to be done continuously to maintain an appropriate cover at all times. In 2012, Vale decided its tailings needed a permanent vegetative cover—not just to suppress dust and reduce erosion, but to improve overall biodiversity. They entered into discussions with Terrapure Organics Solutions (formerly Terratec Environmental) to collaborate on a trial project to apply biosolids on the mine tailings.

In 2012, Vale decided its tailings needed a permanent vegetative cover—not just to suppress dust and reduce erosion, but to improve overall biodiversity. They entered into discussions with Terrapure Organics Solutions (formerly Terratec Environmental) to collaborate on a trial project to apply biosolids on the mine tailings.

The Challenge

The biggest challenge was forging a new path for this type of work. Applying biosolids to mine tailings had never been done before in Ontario. Just to get the right permits and approvals took about two years. Vale Canada and Terrapure worked closely with the Ontario Environment Ministry to ensure standards compliance. Some of this work included helping to determine what those standards should be. Terrapure was able to contribute to these discussions, leveraging decades of expertise in safe biosolids application to agricultural land. Once the Environmental Compliance Approval came in April 2014, the team had to figure out the best application method and proper amount to encourage vegetation, which meant a lot of testing and optimizing.

The Solution

At first, Terrapure mixed biosolids into the surface layer of the tailings. Over time, however, the team learned that applying biosolids to the surface, without mixing, allowed for greater rates of application and coverage at a lower cost.

Terrapure also had to experiment with the right tonnage per hectare. After seeding four trial plots with different amounts of biosolids coverage—20, 40, 60 and 80 dry tonnes/hectare—it was determined that 80 dry tonnes was best for seed germination. At the time, it was the maximum allowable application rate. By the end of 2014, approximately 25 hectares of tailings were amended. Where the biosolids were applied, there were impressive results. Wildlife that had not been seen feeding in the area in years started to return. In 2015, the Ontario Environment Ministry approved an increase in the biosolids application rate to a maximum of 150 dry tonnes/hectare, which was necessary for providing higher organic matter and nutrient levels, and for stabilizing the tailings’ pH levels. This approval also increased the cap on the amount of biosolids that could be delivered to the maximum application rate per hectare. To enhance the program even more, Terrapure and Vale partnered with the City of Greater Sudbury to blend leaf and yard waste with biosolids. By blending these materials, the mixture becomes virtually odourless, its nutrients are more balanced and it allows for a more diverse application.

Glen Watson, Vale’s superintendent of environment, decommissioning and reclamation, surrounded by lush vegetation covering part of the company’s Central Tailings Facility in Sudbury

The Results

As of 2018, Terrapure has successfully covered over 150 hectares of Vale’s tailings with municipal biosolids. Vegetative growth and wildlife are well established on all areas where the team applied organics. Just as importantly, this project has diverted more than 25,000 dry tonnes of valuable biosolids from becoming waste in the landfill. Following the success of the initial trial, the Environment Ministry widened the approval to include all areas of the inactive tailings and a portion of the active tailings. At the current application rate of 150 dry tonnes/hectare, Vale’s central tailings facility could potentially require another 195,000 dry tonnes of biosolids. That’s more than 30 years of biosolids utilization, at an annual rate of 6,000 dry tonnes of material. Needless to say, Vale is very pleased with the results, and the relationship is ongoing. In fact, the Vale team is evaluating other sites in the Sudbury area for this type of remediation, ensuring a long-term, environmentally sustainable rehabilitation program.

Microbial Biotechnology in Environmental Monitoring and Cleanup

A new book on the advances in microbial biotechnology in environmental monitoring and clean-up has just be published by IGI Global.  The book is part of the Advances in Environmental Engineering and Green Technologies Book Series.

In the book, the authors state that pollutants are increasing day by day in the environment due to human interference. Thus, it has become necessary to find solutions to clean up these hazardous pollutants to improve human, animal, and plant health.

Microbial Biotechnology in Environmental Monitoring and Cleanup is a critical scholarly resource that examines the toxic hazardous substances and their impact on the environment. Featuring coverage on a broad range of topics such as pollution of microorganisms, phytoremediation, and bioremediation, this book is geared towards academics, professionals, graduate students, and practitioners interested in emerging techniques for environmental decontamination.

This book is a collection of various eco-friendly technologies which are proposed to under take environmental pollution in a sustainable manner. the role of microbial systems has been taken as a tool for rapid degradation of xenobiotic compounds. Application of microbes as bio-inoculants for quality crop production has been emphasized by some authors. Conventional method of bioremediation using
hyper-accumulator tree species has been given proper weightage. The emerging role of nanotechnology in different fields has been discussed. The contents of book are organized in various sections which deal about microbial biodegradation, phytoremediation and emerging technology of nanocompounds in agriculture sector.

Chapter 18, which covers phytoremedation, acknowledges that environmental pollution with xenobiotics is a global problem and development of inventive remediationtechnologies for the decontamination of impacted sites are therefore of paramount importance.
Phytoremediation capitalizes on plant systems for removal of pollutants from the environment.  Phytoremediation is a low maintenance remediation strategy and less destructive than physical or chemical remediation.  Phytoremediation may occur directly through uptake,translocation into plant shoots and metabolism (phytodegradation) or volatilization (phytovolatilization) or indirectly through plant microbe-contaminant interactions within plant root zones(rhizospheres).  In recent years, researchers have engineered plants with genes that can bestow superior degradation abilities. Thus, phytoremediation can be more explored, demonstrated, and/or implemented for the cleanup of metal contaminants, inorganic pollutants, and organic contaminants.

Topics Covered

The 400-page, 20 chapter book covers many academic areas covered including, but are not limited to:

  • Bio-Fertilizers
  • Bioremediation
  • Microbial Degradation
  • Microorganisms
  • Organic Farming
  • Pesticide Biodegradation
  • Phytoremediation

 

 

Pond Technologies announces project at Markham District Energy

Pond Technologies Holdings Inc. (TSX.V: POND) recently announced the shipment of its proprietary Matrix System to Markham District Energy Inc. (MDE). The shipment marks the commencement of the first phase of a $16.8 Million project to convert CO2 emissions to valuable algae-based nutraceutical products. Pond’s Matrix System optimizes algae strain selection through the analysis of its customer’s emissions.

Pond also announced the signing of an exclusive marketing agreement with MDE who will market and develop customer projects using Pond’s solution for the District Energy market worldwide. District Energy systems are a highly efficient way to provide power, heating and cooling to buildings in communities and campuses from central plants. Bruce Ander, MDE’s President & CEO, is a past Chair of the International District Energy Association that represents over 2,200 members in 26 countries. Energy company for different countries are always developing and changing, trying to find the best energy for their communities. Comparison sites similar to Utility Bidder help to make the choice between energy companies easier for their consumers.

“We are pleased and ready to move this project forward with Pond Technologies. The technology represents a significant opportunity for Markham District Energy to lower our environmental footprint while repurposing greenhouse gas emissions to manufacture a valuable product. As we gain operational experience with the Pond process, we are keen to share our story with our District Energy colleagues here and abroad.” Bruce Ander, President & CEO of Markham District Energy Inc.

Steve Martin, President & CEO of Pond Technologies Inc. commented, “We are very excited to be working with Markham District Energy on this landmark project and grateful for their help in propagating our solution to other District Energy utilities located around the world.”

About Markham District Energy (MDE)
MDE, an energy company owned by the City of Markham, is committed to continuing as a leading developer of municipally owned district energy systems providing strategic foundations for Markham’s Greenprint Sustainability Plan and economic development objectives. MDE owns and operates award-winning community energy systems serving buildings in the developing urban centres of Markham Centre and Cornell Centre.

Markham District Energy is a thermal energy utility owned by the City of Markham

About Pond Technologies:
Located in Markham, Ontario, Pond Technologies Holdings Inc. (Pond) has developed a proprietary growth platform that can transform carbon dioxide (CO2) from virtually any source into valuable bio-products. Pond works with the cement, steel, oil and gas and power generation industries to reduce greenhouse gas emissions and generate new revenue streams.

Pond’s platform technology also includes the growth of algae superfoods for the nutraceutical and food additive markets. Pond’s system is capable of growing many species of algae, including strains that produce anti-oxidants, omega-3 fatty acids, and protein for human and animal consumption.

Algae Carbon Capture system