Posts

How can a wide-area instrumented system boost radiation hazard training?

Written by Steven Pike, Argon Electronics

In the event of a known or suspected radiation accident or incident, the speed of response will be a critical factor in maximising the safety and wellbeing of people and the environment.

Understanding the nature and the significance of the radiation threat is key.

The International Atomic Energy Agency (IAEA) International Nuclear and Radiological Event Severity Scale (INES) provides an invaluable reference for radiological personnel by prioritising radiological incidents or accidents according to seven levels of severity.

The International Nuclear and Radiological Event Severity Scale (INES)

At the least severe end of the INES scale is what is termed a Level 1 Anomaly – which can include events such as the radiological exposure of a member of the public in excess of statutory annual limits, a minor problem with safety components or the loss or theft of a low-activity radioactive source.

Incident levels 2 and 3 on the scale cover such events as a significant failure in the provision of radiological safety, the inadequate packaging or misdelivery of a highly radioactive sealed source or the loss or theft of a highly radioactive sealed source.

An accident where there is a high probability of significant public exposure (such as a release of a significant quantity of radioactive material) is classed as a Level 4 Accident with Local Consequences.

The release of a large quantity of radioactive material (such as a fire within a nuclear reactor) is termed to be an INES Level 5 Accident with Wider Consequences.

A Level 6 Serious Accident refers to the significant release of radioactive material where there is the likelihood of the need for planned countermeasures.

A Major Accident (Level 7) is typified by a major release of radioactive material where there is the risk of widespread health and environmental effects. The 1986 Chernobyl nuclear reactor incident and the 200 Fukushima Nuclear Accident were both deemed to be level 7 incidents on the INES scale.

Enhancing radiological preparedness

Providing the opportunity for realistic hands-on training is a key factor in ensuring that personnel both achieve and maintain the required level of radiological preparedness.

Finding practical and affordable ways to deliver this desired authenticity of training however, can often prove challenging.

Radiological instructors have become well accustomed to juggling a multitude of environmental, health and safety regulations and budgetary considerations.

Often training decisions can come down to one of two choices: to enlist the services of a radiation control technician (RCT) who can oversee the safe execution of the exercise – or to opt for the use of a smaller button source which emits a vastly reduced amount of radiation activity but which can compromise the realism of the exercise.

Simulator detectors, which replicate the look and feel of actual detectors, have proven to be an invaluable asset in the training in the fundamentals of radiation.

But if an instructor wishes to take things further and plan out a whole scenario then it may be desirable to consider other options.

Wide-area instrumented training in real time

Integrated wide-area instrumented simulator training systems such as Argon Electronics’ PlumeSIM and PlumeSIM-SMART, are providing radiological instructors with the ability to deliver even more realistic, rigorous and repeatable radiation training experiences.

Incorporating the use of a simulator training system into radiological exercises has been shown to offer substantial advantages, both for trainee and trainer.

Radiation scenarios can be staged in an unlimited variety of locations including public areas, community institutions, government buildings or enclosed spaces such as an aircraft or armoured vehicle.

When recreating the conditions of a radiological plume, the instructor has the power to predetermine every detail – be it the specific nuclide, the release time, latitude and longitude, the release rate, the source height, the source radius and the release duration.

Depending on the objectives of the exercise, and/or the availability of resources, scenarios can also be conducted live or virtually – with the option for trainers to test their trainees’ skills both in table-top mode or in a field exercise.

Instructors can select the equipment that they wish to be used in the scenario – and they can allocate specific items of equipment to individual team members. In addition it is also easy to simulate all the possible errors that the trainee could make when using their equipment.

The addition of an instructor remote ensures that the trainer retains total control throughout the duration of the exercise, with the option to manage and manipulate a wide range of environmental factors such as the level of remaining contamination, persistency, and changes in wind and weather conditions.

Powerful after action review (AAR) provides an invaluable resource which enables trainer and trainee to replay and scrutinise the key events of an exercise and to verify each student’s performance.

Integrated live training systems such as PlumeSIM enable radiological safety instructors to ramp up the level of realism of their exercises by simulating lethal threat levels and testing their trainees’ multi-threat training capability.

When budgets are tight, the use of a subscription-based training option such as Argon’s Plume-SIM Smart can also offer a viable alternative to purchasing a training system outright – by removing the need for expensive equipment or consumables, and with no requirement for calibration, maintenance or repair.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

How hands-on scenarios can enhance radiological survey training

Written by Steven Pike, Argon Electronics

Radiological surveying is an integral task in maintaining safety wherever quantities of ionizing radiation are in use, or where they are suspected to be present.

Whether it is in the context of a military operation, emergency first response or an industrial setting, radiation safety personnel need to be equipped with the right tools to ensure they can accurately assess their environment and determine the best course of action.

Most radiological survey instruments have been designed to be easy to deploy, but it is important to be competent not just in the hands-on operation of the equipment but in being able to interpret the readings that are obtained and decide upon the appropriate recommendations to ensure safety is not compromised.

Once it has been established that the radiation hazard originates from a sealed source – meaning that there is no contamination risk – the principles of time, distance and shielding are vital.

Whenever possible, trainees should be provided with the opportunity to explore and test these principles in hands-on training scenarios that replicate real-life situations.

By adding the use of simulator detector equipment, there is also an opportunity for trainees to fully experience the characteristics, the behaviour and the risks of ionizing radiation – and to do so in a learning environment that is safe, immersive and highly realistic.

The flexible and high-fidelity nature of well-designed simulator detectors makes it possible for trainers to create a virtually unlimited range of realistic training scenarios for their students.

In this blog post we explore how the key principles of radiation safety can be put to the test in a range of hands-on scenarios.

1. Time

Radiation safety hinges on the understanding of the correlation between dose (or exposure) and dose rate (or the radiation present in the atmosphere) is directly related to time.

When the time (or the duration of exposure) is reduced by half, for example, the dose received will also be halved.

Once the trainee has been able to assess the dose rate present in the atmosphere, this information can be used to calculate their incident stay time in the hot zone (calculated as Exposure Limit divided by Dose Rate), which will allow them to carry out their activities as quickly and as safely as possible.

2. Distance

Distance – or how close an individual is to a radiological point source – is a key factor in enabling trainees to control exposure.

When the distance between the individual and the point source is doubled, this will reduce personal exposure by 75%, according to the rules of the Inverse Square Law.

How close it will be possible to get to a source of radiation without high exposure will depend on the energy of the radiation and the activity of the source.

Distance is a prime concern with gamma rays as they travel at the speed of light. Alpha particles, meanwhile, travel just a few inches in air, while beta particles can travel several feet – meaning that once an operator backs out of the affected area (and assuming that the material is not being spread by wind, rain or other forces) the trainee is no longer at risk.

3. Shielding

Radiation shielding is another vital skill that be put to the test during radiation training exercises.

Shielding is based on the principle of attenuation – or the extent to which a barrier can be used to block or bounce a radio wave.

Which radioactive shielding material will be best suited to the task, will depend on the penetration of the dose.

Alpha particles, for example, can be stopped by shielding that is as thin as a sheet of paper – while beta radiation requires something much heavier, such as an inch of wood or a thick piece of aluminum.

The highly penetrating nature of gamma radiation requires far denser shielding – ideally several inches of concrete or lead.

4. Establishing hazard perimeters

The readings obtained from portable survey meters provide essential information to enable personnel to establish operational control zones or hazard perimeters.

The ability to control (and operate within) a hazard perimeter will rely on a trainee’s proficiency in the following skills:

  • Understanding the physical considerations of the scene – for example, being able to assess the nature and severity of the radiation incident, identifying the presence of other co-existing threats, and protecting critical infrastructure.
  • Using existing topography (roads, structures etc) to enforce the perimeter and to aid in the protection and gathering of forensic evidence

 

Portable radiological survey meters provide radiation protection officers, first responders and CBRNe teams with the vital information they need to detect and measure external ionizing radiation fields.

Understanding the principles of time, distance and shielding, and having the opportunity to put this knowledge to the test in realistic training scenarios, will be vital in ensuring that radiation safety personnel are able to carry out their duties safely, efficiently and effectively.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

 

What are the safety risks when transporting radioactive materials?

Written by Stephen Pike, Argon Electronics

Radioactive materials have a wide variety of applications within the fields of medicine, power generation, manufacturing and the military – and just as with any other product, there are times when these materials may need to be moved from one location to another.

In the US, the Environmental Protection Agency (EPA) estimates that there are around three million shipments of radioactive materials to, from or within the US every year.  In the UK meanwhile, Public Health England (PHE) has reported that somewhere in the region of half a million packages containing radioactive materials are transported to, from or within the UK annually.

Regulation of transport of radioactive materials

Ensuring the safety and security of the transport of radioactive material – whether be it by road, rail, air or sea – is understandably a major priority and one that is highly regulated, depending upon the type, and the quantity, of radioactivity that is being transported.

Materials that are deemed to be low in radioactivity may be able to be shipped with no, or very few, controls.

Materials that are considered to be highly radioactive will be subject to controlled routes, segregation, additional security and specialist packaging and labelling measures.

The UK’s Office for Nuclear Regulation (ONR) has a primary role to play in advising on the safe and secure transportation of radioactive substances across a wide of sectors – from the movement of decommissioned nuclear reactors or the carriage of irradiated nuclear fuel to the shipping of medical radio-pharmaceuticals, or the transport of sealed radioactive sources used within the construction or oil industries.

What constitutes a radiation transport event?

The normal transport of radioactive materials can result in transport workers (and sometimes even members of the public) being exposed to small radiation doses.

The strict regulatory conditions of transport however are designed to minimise these exposures.

Accidents and incidents can occur for a variety of reasons – from seemingly minor administrative errors, to problems arising from insufficient packaging, mishaps that occur during loading or unloading of consignments or the theft or loss of a radioactive material being carried.

When such events do occur there is the risk of radiological consequences not just for those transport workers in the immediate vicinity but for emergency responders, HazMat personnel and the wider public.

According to the Radioactive Materials Transport Event Database (RAMTED) there were a total of 16 accidents or incidents involving the transport of radiological materials in the UK in 2012.

These included the receipt of a flask from a nuclear power station where one of the lid-chock locking bolts was found to be loose; the failure of lifting equipment when removing a type 30B uranium hexafluoride cylinder from its protective shipping packaging; and an incident involving the stealing of pipes and plates from a scrap meal facility that were found to have traces of orphan radioactive sources.

Public Health England differentiates radiation transport events into one of the five following categories:

  1. A transport accident (TA) – which is defined as any event that occurs during the carriage of a consignment of radioactive material and that prevents either the consignment, or the vehicle itself, from being able to complete its journey.
  2. A transport incident (TI) – comprising any form of event, other than an accident, that may have occurred prior to or during the carriage of the consignment and that may have resulted in the loss or damage of the consignment or the unforeseen exposure of transport workers or members of the public.
  3. A handling accident (HA) – encompassing any accident that occurs during the loading, shipping, storing or unloading of a consignment of radioactive material and that results in damage to the consignment.
  4. A handling incident (HI) – defined as any handling event, other than an accident, that may occur during the loading, shipping , storing or unloading of the radioactive consignment.
  5. Contamination (C) – defined an an event where radioactive contamination is found on the surface of a package or where the conveyance of a radioactive material is found to be in excess of the regulatory limit.

The role of radiation safety training

When formulating a radiation training strategy, it is vital that personnel are adequately trained to handle the hazards and the risks associated with incidents involving radioactive materials.

Radiation safety training and development programmes should ideally provide personnel with both the knowledge they need and the practical skills that they will rely on in order to carry out their duties safely and effectively.

While most radiation detection equipment is relatively easy to use, the key lies in ensuring that trainees understand the significance of the readings that they get, that they can recognise the implications of changes in units of measurement and that they have the opportunity to train in as life-like a setting as possible.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

Advanced Explosives Detection System at Indianapolis Airport

Smiths Detection, headquartered in Maryland, recently announced that it had won a competitive bid process from the United States Transportation Security Administration (U.S. TSA) to supply their CTX 9800 explosives detection system to Indianapolis International Airport. The new CTX 9800 systems are the latest generation of CT scanners, helping to advance Indianapolis International’s security screening capabilities.

The CTX 9800 is a computed tomography (CT) explosives detection system. It has customized networking solutions; an intuitive user interface; efficient power consumption; and high-resolution 3D imaging capabilities. Certified by several regulatory authorities including the TSA, the CTX 9800 is also approved by the European Civil Aviation Conference as meeting Standard 3 requirements.

CTX9800 CT Explosives Detection System

Shan Hood, President of Smiths Detection Inc., said, “Smiths Detection is committed to providing the latest in detection technology, helping airports, like Indianapolis, to take advantage of cutting-edge solutions which enhance the passenger experience. The TSA’s selection of the CTX 9800 system for Indianapolis International Airport is a testament to Smiths Detection’s position as a global leader in the use of computed tomography and our long history of partnering with airports and authorities to help keep the traveling public moving safely and efficiently.”

The company also announced that it recently received an order of more than $10 million to supply its RadSeeker, handheld radioisotope detectors and identifiers for screening at Customs and Border Protection (CBP) ports of entry.  The order is part of a five year indefinite delivery/indefinite quantity (IDIQ) contract with DHS Domestic Nuclear Detection Office (DNDO), which was announced in January of 2016.

RadSeeker Hand-held radioisotope identifier (RIID)

 

Nano-Scale Selective Ion Exchange used to Remove Radioactive Contamination from Water

Researchers from the University of Helsinki in Finland recently reported that they have developed a new method to remove radioactive contamination from water.  They claim their method of nano-scale selective ion exchange is faster than the conventional method and more environmentally-friendly as less radioactive solid waste is produced.

Risto Koivula, researcher at the University of Helsinki

The new method of selective ion exchange uses electrospun sodium titanate.  Electrospinning is a fibre production method which uses electric force to draw charged threads of polymer solutions or polymer melts up to fiber diameters in the order of some hundred nanometers  “The advantages of electrospun materials are due to the kinetics, i.e. reaction speed, of ion exchange,” says Risto Koivula, a scientist in the research group Ion Exchange for Nuclear Waste Treatment and for Recycling at the Department of Chemistry at the University of Helsinki.

One conventional method of removing radioactive ions from water is using granular sodium titanate as an ion exchange medium.  It is currently used to treat the 120,000 cubic meters of radioactive wastewater generated as a result of the Fukushima, Japan nuclear accident.  As radioactive wastewater is run through the ion exchanger, the radio-active ions are exchanged with the sodium in the sodium titantate.  The radioactive pollutants remain bound by the granules in the ion exchange unit.

Sodium Titanate fibres

The advantage of sodium titanate over other ion exchange media is that it is selective, which means that it is picks out only the radioactive ions from the water.  One disadvantage of ion exchange is that a water pollution problem is being transferred into a waste management problem.  When the ion exchange capacity is filled, the filtering material has to be switched out.  This leaves solid radio-active waste which must be managed.

The utilization of electrospun sodium titanate results in nano-scale spindles.  The result is an ion exchange solution that occupies less space but provides an equal treatment capability.  “Since less electrospun material is needed from the start of the process, the radio-active waste requiring a permanent repository will also fit in a smaller space,” says Koivula.

The electrospinning equipment at the University of Helsinki was developed and built in the Centre of Excellence for Atomic Layer Deposition, led by Mikko Ritala. The researchers successfully tried this quite simple method for working sodium titanate into fibre.  Koivula’s team studied the ion exchange features of fibre produced this way and found it worked like the commercially produced ones.

The utilization of this selective ion exchange method could be applied to the sites with groundwater contaminated with radioactive ions.

In Canada, the Town of Port Hope (located approximately 100 km east to Toronto) has over 1 million cubic metres of low-level radioactive waste as well as radioactive waste in treatment ponds.  The source of the radioactive contamination is the historic operation of the former radium and uranium refining activities of Eldorado Nuclear.  The wastewater treatment facility at Port Hope is a two-stage process that removes salts, heavy metals, and contaminants such as radium and arsenic.  The process involves chemical precipitation with clarification followed by reverse osmosis.

Clean-up of Radioactive Material in Port Hope Finally Underway

After decades of study and planning, the clean-up or radioactive contamination in the community of Port Hope, Ontario is finally underway.  The Town of Port Hope, located approximately 100 km (60 miles) east on Toronto on Lake Ontario, has an estimated 1.2 million cubic metres (1.5 million cubic yards) of historic low-level radioactive waste scattered at various sites throughout the town.

The contaminated soil and material will be excavated to moved to the LongTerm Waste Management Facility, which is essentially an engineered aboveground landfill where the waste will be safely contained, and the long-term monitoring and maintenance of the new waste management facility.

Other historic low-level radioactive waste – primarily soil contaminated with residue ore from the former radium and uranium refining activities of Eldorado Nuclear — and specified industrial waste from various sites in urban Port Hope will be removed and safely transported to the new facility.

The historic low-level radioactive waste and contaminated soil, located at various sites in the Municipality of
Port Hope, are a consequence of past practices involving the refining of radium and uranium by a former federal Crown Corporation, Eldorado Nuclear Limited, and its private-sector predecessors. These waste materials contain radium-226, uranium, arsenic and other contaminants resulting from the refining process.

The historic waste and surrounding environment are monitored and inspected regularly to ensure the waste does not pose a risk to health or the environment. As part of the Port Hope Area Initiative (PHAI) construction and clean-up phase, the waste will be excavated and relocated to the new Port Hope long-term waste management facility.

In an interview with CBC, Scott Parnell is the General Manager of the Port Hope Area Initiative, which is in charge of the cleanup. He says that after decades of planning, the first loads of an estimated 1.2 million cubic metres of historic low-level radioactive waste will be on the move.

Scott Parnell, general manager of the Port Hope Area Initiative, stands near the town’s harbour.

“There’s been a lot of planning a lot of studies a lot of determination into how to approach the work safely, but this will be the first time we will be removing waste from the community,” said Parnell, who has overseen similar operations in Washington state and Alaska.

The $1.28-billion cleanup operation is a recognition by the federal government that the waste is its “environmental liability.” The radioactive tailings were the byproduct of uranium and radium refining operations run by Eldorado, a former Crown corporation, between 1933 and 1988.

Parnell says that the tailings were given away for free, which helps explain how the contamination was spread through the town.

“So, basically they offered it up and it was used for fill material to level up people’s backyards, for building foundations, for those kinds of things. So, that’s how the material got spread around the community,” Parnell said.

Parnell says an estimated 800 properties may be affected, but says there’s no indication the low levels of radiation are dangerous.

“There’s little human risk associated with the waste that’s identified here in Port Hope,” he said.

The first wastes to be remediated are currently stored under tarps at three locations including the Centre Pier, the Pine Street North Extension in the Highland Drive Landfill area and at the municipal sewage treatment plant. The Centre Pier is the first site to be remediated.

Aerial image of the first locations to be remediated. (source: Canadian Nuclear Laboratories)