Hazardous Waste & Environmental Response Conference – November 25th & 26th

The Hazardous Waste & Environmental Response Conference is scheduled for November 25th & 26th at the Mississauga Convention Centre in Mississauga, Ontario.  The event is co-hosted by the Ontario Waste Management Association and Hazmat Management Magazine.

This 2-day conference provides an essential and timely forum to discuss the management of hazardous waste and special materials, soils and site remediation, hazmat transportation, spill response and cutting-edge technologies and practices. Valuable information will be provided by leading industry, legal, financial and government speakers to individuals and organizations that are engaged in the wide range of services and activities involving hazardous and special materials.

Attendees can expect an informative and inspiring learning and networking experience throughout this unique 2-day event. Session themes provide an essential and timely forum to discuss the management of hazardous waste and special materials, soils and site remediation, hazmat transportation, spill response and cutting-edge technologies and practices.

As the only event of its kind in Canada, delegates will receive valuable information from leading industry, legal, financial and government speakers who are actively engaged in a wide range of services and activities involving hazardous waste and special materials.

Company owners, business managers, plant managers, environmental professionals, consultants, lawyers, government officials and municipalities – all will benefit from the opportunity to learn, share experiences and network with peers.

CONFERENCE SCHEDULE

MONDAY, NOVEMBER 25 – GENERAL SESSIONS

8:00 am – Registration

8:45 am – Opening and Welcome Address

9:00 am – 9:40 am

OPENING KEYNOTE – Lessons Learned from Hazmat Incidents

Jean Claude Morin, Directeur General, GFL Environmental Inc.

Dave Hill, National Director Emergency Response, GFL Environmental Inc.

Jean Claude and Dave will discuss lessons learned from hazmat incidents in Canada, including, train derailments, truck turn-overs, and hazardous materials storage depot explosions. This presentation will also provide an overview of some of the more serious incidents in Canada and discuss the valuable lessons learned regarding best practices in hazmat response.

9:40 am – 10:10 am

Legal Reporting Requirements

Paul Manning, LL.B., LL.M, Certified Specialist in Environmental Law and Principal, Manning Environmental Law

Paul will provide an overview of the Canadian federal and Ontario legislation as it relates to the reporting requirements in the event of a hazmat incident and/or spill. Included in the discussion will be an examination of the case law related to hazmat incidents and failure to report.

10:10 am – 10:45 am – Refreshment Break             

10:45 am – 11:15 am

Hazmat and Spill Response Actions and the Utilization of Countermeasures

Kyle Gravelle, National Technical Advisor, QM Environmental

Kyle will be speaking on hazmat and spill response actions and countermeasures to prevent contamination. Included in the presentation will be real-world examples of incidents in Canada and advice on preparations and hazmat management.

11:15 am – 12:00 pm

PANEL DISCUSSION: Utilization of New Technologies for HazMat Emergency Response

Moderator:  Rob Cook, CEO, OWMA

James Castle, CEO & Founder, Terranova Aerospace

Bob Goodfellow, Manager, Strategic Accounts & Emergency Response, Drain-All Ltd.

Ross Barrett, Business Development/Project Manager, Tomlinson Environmental Services Ltd.

The hazmat and environmental response sector is quickly evolving. During this discussion, panelists will share their experiences on new technologies and methodologies for the management of hazmat and environmental incidents and provide advice on what companies should do to be better prepared for hazmat incidents.

12:00 pm – 1:30 pm – Luncheon Speaker

From Hacking to Hurricanes and Beyond – The New Era of Crisis Communications

Suzanne bernier, CEM, CBCP, MBCI, CMCP, President, SB Crisis Consulting, Founder & Author of Disaster Heroes

During any crisis, communicating effectively to all key stakeholders is key. This session, delivered by a former journalist and now award-winning global crisis communications consultant, will look at the evolution of crisis management and crisis communications over the past 15 years. Specific case studies and lessons learned from events like the recent terror and mass attacks across North America, as well the 2017 hurricane season will be shared, including Texas, Florida and Puerto Rico communications challenges and successes. The session will also review traditional tips and tools required to ensure your organization can communicate effectively during any crisis, while avoiding any reputational damage or additional fall-out that could arise.

1:35 pm – 2:15 pm

Fire Risk in Hazmat and Hazardous Waste Facilities – The Impact and Organizational Costs 

Ryan Fogelman, Vice President of Strategic Partnerships, Fire Rover

Fire safety is an important responsibility for everyone in the hazardous materials & waste sector. The consequences of poor fire safety practices and not understanding the risk are especially serious in properties where processes or quantities of stored hazmat and waste materials would pose a serious ignition hazard.

In an effort to prevent fires and minimize the damage from fires when they occur, owners, managers and operators of hazmat and related facilities will learn about fire safety and how to develop plans to reduce the risk of fire hazards.

Learn about:

  • Data and statistics on waste facility fire incidents
  • Materials and processes that create a fire risk
  • Planning and procedures to reduce fire risk
  • Tools and practices to detect, supress and mitigate fire damage.

2:15 pm – 2:45 pm

Implementation of Land Disposal Restrictions (LDR) in Ontario – Treatment Requirements & Associated Costs

Erica Carabott, Senior Environmental Compliance Manager, Clean Harbours Inc.

The field of hazardous waste management in Ontario is complex and places an onus on all parties involved, including, generators, carriers, transfer and disposal facility operators. Initiatives such as pre-notification, mixing restrictions, land disposal restrictions, recycling restrictions and the requirements of the Hazardous Waste Information Network (HWIN) all add to the cumbersome task. The Landfill Disposal Restrictions (LDR) place responsibilities on generators and service providers alike. This presentation aims to navigate the implementation of LDR in Ontario, with specific emphasis on the Clean Harbors Sarnia facility to accommodate LDR treatment and the significant costs associated with it.

2:45 pm – 3:15 pm – Refreshment Break

3:15 pm – 4:00 pm

New Requirements on the Shipment of Hazardous Goods – Provincial, Federal and International   

Eva Clipsham, A/Safety Policy Advisor for Transport Canada

Steven Carrasco, Director, Program Management Branch, Ontario Ministry of the Environment, Conservation and Parks (MOECP)

Current federal and provincial frameworks for regulating the movement of hazardous waste and materials are currently undergoing change. Manifesting systems are being upgraded and refocused as electronic systems that will provide efficiencies to both generators and transporters. Learn about the current federal and provincial systems and the changes that are anticipated to be implemented in the near future.

4:00 pm – 5:00 pm – All attendees are invited to attend the Tradeshow Reception!

TUESDAY, NOVEMBER 26

8:30 am – Registration

8:45 am – Opening & Welcome Address

9:00 am – 9:45 am

Management of contaminated sites & increasing complexity and cost

Carl Spensieri, M.Sc., P.Eng., Vice President Environment, Berkley Canada (a Berkley Company)

This presentation will explore the various elements contributing to the increasing complexity and cost of managing contaminated sites. Carl will examine emerging risks and speak to potential strategies we can use to mitigate them. This presentation will also highlight opportunities for conference participants to offer new services that help owners of contaminated sites best respond to existing and emerging challenges.

9:45 am – 10:10 am – Refreshment Break

TRACK 1: HAZARDOUS WASTE GENERATION, TRANSPORTATION, TREATMENT AND DISPOSAL

10:15 am – 10:55 am

A National Perspective on the Hazardous Waste

Michael Parker, Vice President, Environmental Compliance, Clean Harbours Inc.

Hear about the challenges and opportunities facing the hazardous waste, hazmat and emergency response sector from an industry leader with a national view. The industry is evolving and the business fundamentals are ever changing. Government administrative and technical burdens are increasing and the volume of hazardous waste is declining – what will the future hold?

11:00 am – 11:40 am

PANEL DISCUSSION: Hazardous Waste & Special Materials – Transportation & Transit Challenges

Jim Halloran, Regional Manager, Heritage – Crystal Clean Inc.

Doug DeCoppel, EH&S Manager, International Permitting and Regulatory Affairs, GFL Environmental Inc.

Frank Wagner, Vice President Compliance, Safety-Kleen Canada Inc.

This panel will discuss key transportation issues and compliance challenges faced by hazardous waste generators and service providers, including significant changes to the documentation, labelling, packaging, emergency planning, and reporting requirements for hazardous waste and special materials shipments resulting from updated regulations and proposed initiatives. The panel will also review key considerations when selecting service providers to manage hazardous waste and special materials.

Topics included in this discussion: E-manifests (provincial and federal – lack of e-data transfer capabilities), HWIN fees (300% increase in fees but no increase in service), Transboundary Permits (lack of e-data transfer capabilities), container integrity and generator awareness.

11:45 am – 12:25 pm

Factors Influencing Treatment and Disposal Options for Hazardous Waste in Ontario

Ed Vago, Director of Operations, Covanta Environmental Solutions

Dan Boehm, Director of Business Development, Veolia ES Canada Industrial Services Inc.

Learn about the many recycling, treatment and disposal options for hazardous waste and hazardous materials in Ontario. Hear about the regulatory and operational factors to consider when deciding on the best management approach.

TRACK 2: SITE REMEDIATION

10:15 am – 10:55 am

Soils – Dig and Dump vs. On-Site Remediation: Factors to Consider & Case Studies

Devin Rosnak, Senior Client Manager & Technical Sales Manager, Ground Force Environmental

D. Grant Walsom, Partner, XCG Consulting Limited, Environmental Engineers & Scientists

Mark Tigchelaar, P. Eng., President and Founder of GeoSolv Inc.

Developers of brownfield site are faced with decisions around how to manage excavated soils. Impacted soils and soils with hazardous characteristics as tested at the site of generation can be managed through on-site remediation, or can be removed from the site to a variety of remediation and/or disposal options. Learn about the key options and factors that contribute to determining the optimum approach to managing soils.

11:00 am – 11:40 am

The Legal Framework for the Management of Contaminated Sites and Materials      

John Tidball, Partner, Specialist in Environmental Law, Miller Thomson LLP

The management of contaminated sites and related materials, including soils, are constrained by both regulatory and legal framework. Hear from a legal expert with unparalleled experience about the regulatory and legal issues that all developers/excavators transporters and service providers should be aware of as the legal liabilities in this area can be significant.

11:45 am – 12:25 pm

Anaerobic Bioremediation & Bioaugmentation – from the Lab to the Field

Dr. Elizabeth Edwards (Professor), Dr.Luz Puentes Jacome, Dr. Olivia Molenda, Dr. Courtney Toth, Dr. Ivy Yang (all Post doctoral fellows in the lab), Chemical Engineering & Applied Chemistry, University of Toronto

Together with her Post-Doctoral team, Dr. Edwards will present an overview of anaerobic bioremediation and bioaugmentation with some examples from their research and its application to the field.

12:30 pm – 2:00 pm

CLOSING KEYNOTE & LUNCHEON SPEAKER

Andrea Khanjin, MPP Barrie-Innisfil, Parliamentary Assistant, Ministry of the Environment, Conservation and Parks (MOECP)


Diamond Sponsor

 

 

 

 

 

Emerald Sponsor

 

 

 

 

Supporting Sponsors

 

 

 

 

 

 

 

 

 

 

Ontario aerosol manufacturer fined for violating Environmental Emergency Regulations

Written by Paul ManningManning Environmental Law

As of August 24, 2019, the Environmental Emergency Regulations, 2019 replaced the existing Environmental Emergency Regulations, which require industry to take steps to prevent, prepare for, respond to, and recover from the accidental release of harmful chemicals.

The Regulations require that any person who owns, has the charge of, manages, or controls a regulated substance at or above certain quantities to notify Environment and Climate Change Canada. For higher-risk facilities, an environmental emergency plan must be prepared, brought into effect, and exercised.

On November 12, 2019, K-G Spray-Pak Inc. of Concord, Ontario pleaded guilty in the Ontario Court of Justice to two offences under the Canadian Environmental Protection Act, 1999, including one count of violating the Environmental Emergency Regulations and one count of failing to comply with an environmental protection compliance order. The company was ordered to pay a fine of $170,000.

In February 2017, Environment and Climate Change Canada’s enforcement officers launched an investigation, which revealed that K-G Spray-Pak Inc., a manufacturer, marketer, and distributor of aerosol products, had failed to comply with an environmental protection compliance order issued in July 2016.

Environmental protection compliance orders are issued by Environment and Climate Change Canada’s enforcement officers to put an immediate stop to a violation of the Canadian Environmental Protection Act, 1999, to prevent a violation from occurring, or to require action be taken to address a violation.

The company was subsequently charged when it failed to implement and test environmental emergency plans within the prescribed time limit specified in the compliance order.

https://www.canada.ca/en/environment-climate-change/news/2019/11/ontario-aerosol-manufacturer-fined-for-violating-the-canadian-environmental-protection-act1999.html

This article has been republished with the permission of the author. It was first published here .

This article is provided only as a general guide and is not legal advice. If you do have any issue that requires legal advice please contact Manning Environmental Law.


About the Author

Paul Manning is the principal of Manning Environmental Law and an environmental law specialist certified by the Law Society of Ontario. He has been named as one of the World’s Leading Environmental Lawyers and one of the World’s Leading Climate Change Lawyers by Who’s Who Legal.
Paul advises clients on a wide range of environmental law issues and represents them as counsel before tribunals and the courts. His practice focuses on environmental, energy, planning and Aboriginal law.

 

 

What Will Be driving Growth of Waste Management & Remediation Services Market Near Future

Garner Insights, a market intelligence and consulting firm, recently published a research report on the global waste management and remediation services market. The report 99-page report covers a market Overview, future economic impact, competition by manufacturers, along with supply (production), & consumption analysis.

The report states that waste management companies are using technologies such as Internet of Things (IoT) for better management of waste and recycling. IoT provides solutions such as route optimization and operational analytics to reducing costs.

The leading waste management companies covered in the report include Waste Management, Republic Services, Clean Harbors, Stericycle, and Progessive Waste Solutions.

The product segment analysis is broken down in the report as Waste Collection, Waste Treatment And Disposal, Remediation, Material Recovery.

The report covers the United States, EU, Japan, China, India, Southeast Asia markets and provides information on each geographic market including sales, revenue, and market share and growth rate.

Canadian Consulting Firm acquired by UK Giant

Novus Environmental, a 25-person specialized consulting firm with offices in Guelph ON and Calgary AB, was recently acquired by SLR, an UK-headquartered global environmental and advisory firm.

Novus will bring additional capability to SLR’s North American business in air quality, noise and vibration, and wind and climate. The Novus team will join SLR’s Canada business, which will now be 280 strong with 18 offices.

SLR began as SECOR Ltd. in 1994. Starting as a UK business, the company now operates as a global company with more than 1,100 people delivering client solutions across five regions. SLR offers a wide range of advisory and environmental consulting services.

This is SLR’s third acquisition in four months, reflecting the confidence of the company and its new investor Charterhouse Capital Partners in the market, according to Neil Penhall, SLR’s chief executive.

Global Crisis, Emergency and Incident Management Platforms Market 2019

Persistence Market Research recent market report on Global Crisis, Emergency and Incident Management Platforms estimates that it will be worth $102 billion (USD) by the end of 2024.

A 2017 market analysis by Persistence Market Research on the market in North America predicted the year-over-year growth the Global Crisis, Emergency and Incident Management Platforms to increase at a CAGR of 7.2%. through to 2023. The 2017 report estimated that the North America market accounted for a relatively high market share and be valued at more than US$ 20 Billion in 2017. The report estimated that the North American regional market would continue to remain dominant in terms of value during the forecast period (2017 – 2024).

The latest market report from Persistence Market Research predicts that the global market or crisis, emergency & incident management platforms will be fragmented across various systems and platforms. Among which, the demand for web-based emergency management software, geospatial technology, emergency notification system, hazmat technology, seismic warning systems, and remote weather monitoring systems is expected to gain traction throughout the forecast period. These systems are also predicted to be demanding greater incorporation of communication technologies. Through 2024, satellite phone, vehicle-ready gateways, and emergency response radars will be the most dominant type of communication technologies used in working of any crisis, emergency & incident management platform.

Likewise, the report also expects that during the stipulated forecast period, professional services such as consulting and emergency operation center (EOC) design & integration will be in great demand. By the end of 2024, crisis, emergency & incident management platforms will be actively adopted across industry verticals such as BFSI, energy & utility, government & defense, and telecommunication and IT.

A regional analysis of the global crisis, emergency & incident management platform market indicates that North America will dominate by accounting for over US$ 36 Billion revenues by 2024-end. Adoption for such platforms will also be high in Asia-Pacific, and the region is expected to showcase a 6% value CAGR.

Leading providers of crisis, emergency & incident management platforms in the world include Honeywell International, Inc., Lockheed Martin Corporation, Motorola Solution, Inc., Rockwell Collins, Inc., Siemens AG, Iridium Communication Inc., Guardly, Environmental System Research Institute, Inc., and Intergraph Corporation.

Hazardous industry leaders give insight on the keys to operational excellence

A global survey of hazardous industries and Operational Index was recently published by Sphera. The annual Operational Excellence Index (OEI) survey report which highlights trends in digital transformation and OE strategies across the hazardous industries.

Previously conducted by Petrotechnics, now a Sphera company, the index is in its third year of surveying oil and gas, chemical, energy and industry manufacturing professionals to gauge attitudes around OE and the measures taken towards its adoption. Year after year respondents agree, OE programs help reduce risk, cut costs, and improve productivity. The 2018/2019 survey reveals senior leaders are relying on technologies to support their OE initiatives and identifies where they are coming up short and what they could do to improve.

Ninety percent of respondents agree digital transformation will accelerate their ability to achieve OE – not just as a one-off target but as an ongoing business objective. This is a significant increase from last year’s report where 73% of leaders agreed that going digital was key to achieving OE. Implementing digital technologies is now aligned with overall business goals with 55% leveraging technology to reduce operational risk and 55% to improve asset availability and uptime.

Paul Marushka, President and CEO at Sphera, commented, “As the third-annual Operational Excellence Index shows, digital transformation is upon us. As companies look for new ways to keep their people safe, their operations productive and their products sustainable, being able to tap into and monitor data from Industry 4.0 solutions will be a major differentiator for organizations looking to separate themselves from the competition. It’s not surprising that 90% of respondents agree that digital technology will accelerate operational excellence. We couldn’t agree more. Sphera believes digital is the wave of the future for operational risk mitigation.”

But while industry leaders agree digital is essential to OE, more than half are still trying to figure out what ‘digital transformation’ means for them, and 69% are just beginning their digital journey. The approach to digital matters, according to 83% of survey respondents, who admit they have relied on legacy systems to improve their business agility but had not embedded operational best practices cross-functionally.

The good news is the industry is on the brink of a major step forward when it comes to achieving OE through digitalization. Seventy-five percent of leaders recognize the need to create new, insight-driven business processes across enterprise functions. Advanced analytics and digital twins were highlighted as key solutions to help operators understand how to make better, safer planning and operational decisions. 

Scott Lehmann, VP, Product Management, ORM for Operations at Sphera, said, “This year’s survey clearly illustrates the challenges digital leaders face within their own organizations to understand what digital transformation means or could mean practically and tangibly to their company. While the pace of digital transformation and ROI is still in its early days, the survey points strongly to a rapid acceleration on the horizon. Digital leaders understand digital integration and the adoption of new technologies must focus on creating actionable insights to help underpin new cross-functional business processes that enhance decision-making and the way people work together.”

One survey respondent suggested: “The best approach to digital is not to use technologies to close gaps that you know already exist. Rather, start with a blank sheet of paper and define what you need – and then assess the available technologies.”

Petrotechnics, now a Sphera company, conducted the survey between October and November 2018, collecting 116 responses from a broad representation of functions, demographics and industries across the hazardous industries, including: oil, gas, chemicals, manufacturing, utilities, mining, engineering and other sectors. The survey included respondents from each major region – specifically Middle East (29%), Europe (28%), North America (28%), Asia Pacific (11%), Africa (3%) and South America (1%).

View the full report and results from the 2018/2019 Operational Excellence Index.

Ontario: Trucking Company Fined $250,000 over hazmat incident

Titanium Trucking Services Inc., headquartered in Ontario, was recently convicted of one violation under the Ontario Environmental Protection Act and was fined $250,000 plus a victim fine surcharge of $62,500 and was given 24 months to pay the fine. Luckily, no one was h The fine was the result of a hazmat incident in which a fluorosilicic acid spilled from a tanker truck into the natural environment, which caused adverse effects. No one can predict anything like this to happen, which is why it is important to always stay focused on the road no matter what vehicle you drive. Luckily no one was hurt in this collision. Saying this though, if you have been involved in a trucking accident and were not sure what to do next, getting some assistance from a personal injury lawyer springfield il could be the answer you need that can help you get your life back on track after this incident. There’s nothing wrong in asking for help.

Fluorosilicic acid is corrosive and causes burns. It decomposes when heated, with possible emanation of toxic hydrofluoric acid vapours. It is used in fluoridating water and in aluminum production. In the aquatic environment, an accidental spillage of fluorosilic acid would suddenly reduce pH level due to the product’s acidic properties.

At the time of the offence, Titanium Trucking Services Inc., which is located in Bolton (just northwest of Toronto) had a contract with a Burlington, Ontario area chemical company to provide drivers and vehicles on a dedicated basis for chemical product transportation.

In January 2017, the Burlington area chemical company placed an order for 81,000 kg of 37-42% fluorosilicic acid, which was required for pickup in Montreal for transport to Burlington. Fluorosilicic acid is a corrosive liquid, classified as a dangerous good.

On the date of the planned chemical pick-up, Environment Canada had issued weather advisories relating to a major winter storm and the public was instructed to consider postponing non-essential travel.

The chemical pick-up occurred as planned on March 14, 2017, and within four hours after leaving Montreal, the truck and the driver were involved in a multi-vehicle collision while traveling westbound on Highway 401. As a result of the collision 15 totes of fluorosilicic acid ejected through the front wall of the trailer and also came to rest in the roadside ditch.

Eight of the totes of acid that ejected from the trailer were punctured and spilled approximately 8,000 litres of acid into the ditch and onto the truck cab, dousing the driver, which eventually resulted in his death later in hospital.

March 14, 2017 incident on Highway 401 near Mallorytown. Several first responders were exposed and needed to be decontaminated. (XBR Traffic)

The acid discharge caused further adverse effects. a total of 13 First responders and another sixteen members of the public had to be decontaminated, the 401 highway was closed in both directions, and the OPP officer who initially attempted to extract the truck driver from the cab on scene experienced significant health effects. In addition, adverse impacts to the roadside soil ecosystem occurred.

Bioremediation: Global Markets and Technologies to 2023

A report issued by BCC Research provides an overview of the global markets and technologies of the bioremediation industry. The report predicts that the global bioremediation market should grow from $91.0 billion in 2018 to $186.3 billion by 2023, increasing at a compound annual growth rate (CAGR) of 15.4% from 2018 through 2023.

One of the finding of the report is that the application of bioremediation technology in the water bodies sector held the largest market share in 2017, and it is expected to remain the market leader throughout the forecast period.

The report predicts an ever-increasing use of bioremediation techniques for treating sewage, lakes, rivers and streams, ponds and aqua culture is anticipated to create huge growth opportunities for the market in the coming years. In recent years, however, the rise in the agriculture industries has augmented the growth of hazardous pollutants in the environment, and thus the application of bioremediation methods in the agricultural sector is expected to be the fastest-growing segment.

Redox zones of a typical contaminant plume (Source: Parsons 2004)

The report breaks down and analyzes the bioremediation market into three categories:

  • By type: In situ and ex situ bioremediation.
  • By application: Water bodies, mining, oil and gas, agriculture, automotive and other industries.
  • By region: North America is segmented into the U.S., Canada and Mexico; Europe is segmented into the U.K., Germany, France, Russia and Rest of Europe; the Asia-Pacific region is segmented into Japan, India, China and Rest of Asia-Pacific; and the Rest of the World (ROW) covers Latin America, Middle East and Africa.

The report provides estimated values used are based on manufacturers’ total revenues. Projected and forecast revenue values are in constant U.S. dollars unadjusted for inflation.

This report also includes a patent analysis and a listing of company profiles for key players in the bioremediation market.

Similar Reports

In 2014, a team of United Kingdom researchers at University of Nottingham and Heriot-Watt University issued the results of a global survey on the use of bioremediation technologies for addressing environmental pollution problems. The findings of the survey were quite interesting.

Preferred vs. Actual Treatment Method

One of the findings of the UK survey was the difference between the preferred vs. actual treatment method. More than half of respondents (51%) stated that they would prefer to use environmentally friendly approaches including microbial remediation (35%) and phytoremediation (16%). However, historical information suggests the opposite has actually been the case. Considering the relative low cost and low energy requirements of bioremediation technologies, the gulf between aspiration and practice might be due to various factors involving the risk-averse nature of the contaminated-land industry, or difficulties in project design. The latter include identifying appropriate organisms for removing specified contaminants, optimizing environmental conditions for their action, ascertaining extents of eventual clean-up, and the incomplete understanding of all the mechanisms and processes involved. These lead to difficulties in modeling, simulating and/or controlling these processes for improved outcomes.

Application of Bioremediation Techniques

The Figure below compares the broad bioremediation methods being employed within industry according to the 2014 survey, namely monitored natural attenuation (MNA), bio-augmentation and bio-stimulation. The use of low-cost in situ technologies (like MNA) featured quite prominently, particularly in North America and Europe, where it accounts for over 60% of the bioremediation methods being used. This finding points to a strong concern within the developed countries for better maintenance of ecological balance and preventing a disruption of naturally occurring populations.

MNA has been shown to require 1) elaborate modeling, 2) evaluation of contaminant degradation rates and pathways, and 3) a prediction of contaminant concentrations at migration distances and time points downstream of exposure points. This is to determine which natural processes will reduce contaminant concentrations below risk levels before potential courses of exposure are completed, and to confirm that degradation is proceeding at rates consistent with clean-up objectives. These results appear to suggest that regions which employ computational and modeling resources are better able to use low-cost bioremediation technologies like MNA, whereas the others tend to use the more traditional and less cost-effective technologies. In all the continents, researchers were found to favor the use of bio-stimulation methods. Less disruption of ecological balance is apparently a global concern.

Background on Bioremediation

Bioremediation is a method that uses naturally occurring microorganisms such as bacteria, fungi and yeast to degrade or break down hazardous substances into non-toxic or less-toxic substances.Microorganisms eat and digest organic substances for energy and nutrients.

There are certain microorganisms that can dissolve organic substances such as solvents or fuels that are hazardous to the environment.These microorganisms degrade the organic contaminants into less-toxic products, mainly water and carbon dioxide.

The microorganisms must be healthy and active for this to occur.

Bioremediation technology helps microorganisms grow and boosts microbial population by generating optimum environmental conditions. The particular bioremediation technology utilized is determined by various factors, including the site conditions, the presence of type of microorganisms, and the toxicity and quantity of contaminant chemicals.

Bioremediation takes place under anaerobic and aerobic conditions.In the case of aerobic conditions, microorganisms utilize the amount of oxygen present in atmosphere to function.

With a sufficient amount of oxygen, microorganisms transform organic contaminants into water and carbon dioxide. Anaerobic conditions help biological activity in which oxygen is not present so that the microorganisms degrade chemical compounds present in the soil to release the required amount of energy.

Factors of influence in bioremediation processes

Bioremediation technology is used to clean up contaminated water and soil.There are two main types of bioremediation: in situ and ex situ.

The in situ bioremediation process treats the contaminated groundwater or soil in the location where it is found. The ex situ process requires the pumping of groundwater or the excavation of contaminated soil before it can be treated.

In situ bioremediation type is typically segmented as phytoremediation, bioventing, bioleaching, bioslurping, biostimulation and bioaugmentation. The ex situ bioremediation type is typically segmented as composting, controlled solid-phase treatment and slurry-phase biological treatment.

Biodegradation is a cost-effective natural process that is useful for the treatment of organic wastes.The extent of biodegradation is greatly dependent upon the initial concentrations and toxicity of the contaminants, the properties of the contaminated soil, their biodegradability and the specific treatmentsystem selected.

In biodegradation treatment, the targeted contaminants are semi-volatile and nonhalogenated volatile organics and fuels. The benefits of bioremediation, however, are limited at sites with highly chlorinated organics and high concentrations of metals, as they may be harmful to the microorganisms.

https://www.researchandmarkets.com/publication/mkvz6uj/4752244

Industrial Absorbents Market to Exceed $4.7 Billion by 2023

According to the new market research report, the industrial absorbents market is expected to grow from USD 3.7 billion in 2018 to USD 4.7 billion by 2023, at a Compound Annual Growth Rate (CAGR) of 5.1% during the forecast period.

The report, prepared by Research and Markets and entitled “Industrial Absorbents Market By Material Type (Natural Organic & Inorganic, Synthetic), Product (Pads, Rolls, Booms & Socks), Type (Universal, Oil-only, HAZMAT), End-use Industry (Oil & Gas, Chemical, Food Processing), and Region – Global Forecast to 2023“, states that the major factors driving the industrial absorbents market include growing environmental concerns and regulations regarding oil and chemical spills.

The synthetic segment is expected to be the fastest-growing material type segment in the industrial absorbents market. The industrial absorbents market by material type has been categorized into natural organic, natural inorganic, and synthetic. Synthetic industrial absorbents are capable of absorbing liquid up to 70 times of their weight, which makes them a highly adopted material for industrial applications. Synthetic absorbents have properties such as non-flammability and excellent water repellency, which makes them suitable for applications in oil-only and HAZMAT spill control products.

Booms and socks are ideal industrial absorbents products for spill control. Booms and socks are widely used for oil-based spill control in water environment. Booms have excellent water repelling properties and are best suited for water environments such as sea, lakes, and ponds, among others. Socks are flexible tubes which are used to control and contain spills on land environment and are ideal for quickly absorbing oil- or water-based liquid spills on land. In regions such as the Middle East & Africa and Europe, there are high occurrences of large spills in marine areas, which drives the growth of booms & socks segment in the industrial absorbents market.

Oil Absorbent Booms

Market Drivers

HAZMAT/chemical absorbent products are used to cleanup spills involving acids, bases, and other hazardous or unknown liquids as these spills can have harmful impacts on the environment and can be dangerous to the living beings present in the vicinity. HAZMAT/chemical absorbent products are designed to absorb the most aggressive acidic or caustic fluids and are majorly composed of synthetic absorbents. In addition, stringent regulations in regions such as North America and Europe on chemical discharge in to the environment have led to an increase in the demand for spill control products designed for chemicals. Therefore, this factor has fueled the adoption and application of HAZMAT/chemical absorbent products, which is driving the growth of the industrial absorbents market.

Chemicals are hazardous materials, and can cause severe harm to humans or environment if accidentally released or spilled in the environment. Chemical accidents usually occur during transportation of stored chemicals. Chemical manufacturers need to immediately respond to accidental spills that occur during manufacturing processes to minimize the impact of spills on the environment. Furthermore, regions such as North America and Europe have stringent norms with respect to chemicals and spill response. All these factors have fueled the growth of the industrial absorbents market in the chemical end-use industry.

Asian Pacific Market

Asia Pacific industrial absorbents market is expected to have the highest growth rate during the forecast period due to the rising awareness and pressure to reinforce strict environmental regulations for spill response & control and pollution caused by end-use industries. The industrial absorbents market in Asia Pacific is driven by the demand from countries such as China, Japan, India, and South Korea, owing to rapid industrialization and rising occurrences of small liquid spills across the end-use industries.

Key Market Players

The major manufacturers in the global industrial absorbents market are 3M Company (US), Brady Corporation (US), Decorus Europe Ltd. (UK), Johnson Matthey Plc (UK), Kimberly-Clark Professional (US), Meltblown Technologies Inc. (US), Monarch Green, Inc. (US), New Pig Corporation (US), and Oil-Dri Corporation of America (US).

Canada’s draft 2019–2022 Federal Sustainable Development Strategy: Impacts on Clean Technology and Brownfield Development

The Government of Canada recently released the Draft 2019–2022 Federal Sustainable Development Strategy for public consultation and tabled the Government’s 2018 Progress Report of the 2016–2019 Federal Sustainable Development Strategy.

The draft Strategy sets out the Government of Canada’s environmental sustainability priorities, establishes goals and targets, and identifies actions that 42 departments and agencies across government will take to reduce greenhouse gas emissions from their operations and advance sustainable development across Canada.

Of interest to professionals in the environmental sector is some of the Government’s goals with respect to the greening of government. For example, the Government is aiming to reduce greenhouse gas emissions from federal government facilities and fleets by 40% by 2030 (with an aspiration to achieve this target by 2025) and 80% below 2005 levels by 2050. It also has the goal to divert at least 75% (by weight) of all non-hazardous operational waste (including plastic waste) by 2030, and divert at least 90% (by weight) of all construction and demolition waste (striving to achieve 100% by 2030), where supported by local infrastructure. The administrative fleet will be comprised of at least 80% zero-emission vehicles by 2030 according to the draft report.

With respect to real property, the proposed actions of the Canadian federal government include the following: (1) All new buildings and major building retrofits will prioritize low-carbon investments based on integrated design principles, and life-cycle and total cost-of-ownership assessments which incorporate shadow carbon pricing; (2) Minimize embodied carbon and the use of harmful materials in construction and renovation; and (3) Departments will adopt and deploy clean technologies and implement procedures to manage building operations and take advantage of programs to improve the environmental performance of their buildings.

For professionals involved in clean technology, the draft report calls for the implement of the Government’s pledge to double federal government investments in clean energy research, development and demonstration from 2015 levels of $387 million to $775 million by 2020.

The 2018 Progress Report shows how the Government of Canada is implementing the 2016–2019 Federal Sustainable Development Strategy, demonstrating that it is on track to meeting many of the commitments laid out in the Strategy. This includes highlighting the leadership role Canada has taken in working toward zero plastic waste and implementing measures to conserve marine areas, as well as actions on climate change.

With respect to clean technology, clean energy, and clean growth, the progress report touts the fact that through three consecutive federal budgets, the Government of Canada has made substantial investments in initiatives to support clean technology, clean energy and clean growth. These commitments include: (1) $2.3 billion in 2017 for clean technology and clean energy research, development, demonstration, adoption, commercialization and use; (2) $1.26 billion in Budget 2017 for the Strategic Innovation Fund; and (3) $4 billion in 2018 in Canada’s research and science infrastructure, much of which helps drive innovation towards a clean growth economy.

The draft Strategy updates the 2016–2019 Federal Sustainable Development Strategy, largely maintaining its aspirational goals while adding targets that reflect new initiatives, updating milestones with new priorities, and strengthening links to the 2030 Agenda for Sustainable Development. In all, 29 medium-term targets support the draft Strategy’s goals, along with 60 short-term milestones and clear action plans.

Among other results, the 2018 Progress Report shows that

  • from 2016 to 2017, greenhouse gas emissions from federal government operations were 28 per cent lower than in 2005 to 2006—more than halfway to the target to reduce emissions from federal buildings and fleets by 40 per cent of 2005 levels by 2030;
  • as of December 2017, close to 8 per cent of Canada’s coastal and marine areas were conserved; and
  • from 2017 to 2018, visits to national parks and marine conservation areas increased by 34 per cent above the 2010 to 2011 baseline levels.

Canadians have the opportunity to provide comments on the draft Strategy until early Spring 2019. For further information: Caroline Thériault, Press Secretary, Office of the Minister of Environment and Climate Change, 613-462-5473.