Green Remediation: Spreadsheets for Environmental Footprint Analysis

The United States Environmental Protection Agency (U.S. EPA) recently updated a set of analytical workbooks known as “SEFA” (Spreadsheets for Environmental Footprint Analysis) to help decision-makers analyze the environmental footprint of a site cleanup project, determine which cleanup activities drive the footprint, and adjust project parameters to reduce the footprint. Information to be input by the user may be gathered from project planning documents, field records and other existing resources. Automated calculations within SEFA generate outputs that quantify 21 metrics corresponding to core elements of a greener cleanup.

 

Environmental Footprint Summary

Core Element Green Remediation Metric Unit of Measure
Materials & Waste M&W-1 Refined materials used on site tons
M&W-2 Percent of refined materials from recycled or waste material percent
M&W-3 Unrefined materials used on site tons
M&W-4 Percent of unrefined materials from recycled or waste material percent
M&W-5 Onsite hazardous waste generated tons
M&W-6 Onsite non-hazardous waste generated tons
M&W-7 Percent of total potential onsite waste that is recycled or reused percent
Water Onsite water use (by source)
W-1 – Source, use, fate combination #1 millions of gallons
W-2 – Source, use, fate combination #2 millions of gallons
W-3 – Source, use, fate combination #3 millions of gallons
W-4 – Source, use, fate combination #4 millions of gallons
Energy E-1 Total energy use MMBtu
E-2 Total energy voluntarily derived from renewable resources
E-2A – Onsite generation or use and biodiesel use MMBtu
E-2B – Voluntary purchase of renewable electricity MWh
E-2C – Voluntary purchase of RECs MWh
Air A-1 Onsite NOx, SOx, and PM10 emissions lbs
A-2 Onsite HAP emissions lbs
A-3 Total NOx, SOx, and PM10 emissions lbs
A-4 Total HAP emissions lbs
A-5 Total GHG emissions tons CO2e
Land & Ecosystems

Qualitative description

SEFA was first released in 2012 and updated in 2014. In 2019, SEFA was updated to incorporate new default footprint conversion factors for additional materials, diesel or gasoline engines of various sizes, and laboratory analyses. The 2019 update (Version 3.0) also provides additional areas for entering user-defined footprint conversion factors.

Instructions for SEFA Users

  • SEFA comprises three internally linked workbooks (files) in a standard spreadsheet (Excel) format; the files should be saved in a single directory to assure accurate/complete data exchange.
  • Optimal functioning of the workbooks relies on use of Microsoft Office 2013 or higher.
  • An “Introduction” worksheet (tab) in the “Main” workbook provides an overview of SEFA, including its data structure.
  • Technical support in using SEFA is not available outside the Agency; other parties interested in using or adapting the workbooks may wish to obtain technical assistance from qualified environmental or engineering professionals.

Supporting Methodology

EPA’s “Methodology for Understanding and Reducing a Project’s Environmental Footprint” report provides a seven-step process for quantifying the 21 metrics associated with a site cleanup. The report also addresses the value of footprint analysis; discusses the level of effort and cost involved in footprint analysis; details interpretative considerations; provides illustrative approaches to reducing a cleanup project’s environmental footprint; and contains related planning checklists and reference tables.

Newest Guidance on Implementing Advanced Site Characterization Tools

The United States Interstate Technology and Regulatory Council (ITRC) recently published their newest guidance document, Implementing Advanced Site Characterization Tools.  Advanced site characterization tools (ASCTs) are capable of rapid implementation and data generation and can be used to provide data for a more precise and accurate conceptual site model. Although these tools have been available for several years, they often are not used because users perceive them to be expensive and unavailable, or do not understand how ASCTs work and how to interpret the acquired data.

Over the past two years, a team of environmental experts worked together to create this comprehensive guidance to assist stakeholders with the selection and application of ASCTs, as well as the interpretation of data gathered by ASCTs to evaluate the best cleanup options for a project. The guidance divides ASCTs into four categories: Direct Sensing, Borehole Geophysical, Surface Geophysical, and Remote Sensing.

To support the selection and use of ASCTs, this free guidance includes:

  • An ASCT Selection Tool that provides an interactive dataset to identify appropriate tools for collecting geologic, hydrologic, and chemical data,
  • Summary Tables that provide additional information to evaluate the applicability of each tool,
  • Case Studies that provide examples of the use of tools at a site,
  • Checklists that provide information to be considered when planning to use a tool, describe typical content of a report, and identify appropriate quality control checks, and
  • Training Videos that provide an overview of the ASCT document and examples of the application of select tools.

Access the document by visiting https://asct-1.itrcweb.org/


About the U.S. ITRC

The Interstate Technology and Regulatory Council (ITRC) is a state-led coalition working to reduce barriers to the use of innovative environmental technologies and approaches so that compliance costs are reduced and cleanup efficacy is maximized. ITRC produces documents and training that broaden and deepen technical knowledge and expedite quality regulatory decision making while protecting human health and the environment. With private and public sector members from all 50 states and the District of Columbia, ITRC truly provides a national perspective.

How new technology is improving first responder safety

Written by Steve Pike, Argon Electronics

When the pressure is on to make quick decisions in emergency response situations, the value of practical personal experience is something that can never be underestimated.

But while the “human factor” remains an inestimable force, it is also essential that first responders have access to the appropriate technological support to enable them to work safely and effectively in the field.

In the US, the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) works in close collaboration with the nation’s emergency response community.

Their recent projects have included the development of body-worn cameras that activate without responder manipulation, thermal sensors for firefighters that provide early detection of infrared radiation (IR), and wearable smart chemical sensors that warn responders of toxic exposure.

The International Forum to Advance First Responder Innovation (IFAFRI) brings together global industry and academia to identify common capability gaps within first response – in particular the ability to rapidly identify hazardous agents, and to detect, monitor and analyse hazards in real time.

More recently, an exciting array of new technologies have been put to use within the emergency services sector – including an eCall vehicle alarm system that delivers automated messages to emergency services following an accident, the deployment of drones for search and rescue, and the development of artificial intelligence (AI) solutions for firefighters.

Advancements in radiation safety training

New innovations in simulator detector technology for radiation safety training are also playing an important role in supporting first response personnel.

Unlike other forms of hazardous materials where the threat may be clearly evident, ionising radiation is a formidable and invisible force.

So it is even more vital that first responders are equipped with the correct tools, that they are skilled in interpreting the readings they obtain and that they are confident to act on that information.

Enhanced simulator training systems

Incorporating the use of simulator detector equipment in radiation training exercises offers an opportunity to significantly enhance the quality of a trainee’s learning experience.

The effectiveness of the training, however, will depend on a number of key factors.

Firstly there is the realism of the simulator’s user interface components (the visual display, indicators, switch panel, vibrator, sounder etc) which should be designed to match as closely as possible the look, feel and functionality of the actual device.

As trainees approach or move away from the simulation source, the response speed and characteristics of the simulation will also be important in providing an accurate depiction of the behaviour of the actual detector.

Also key, is the extent to which trainees are able to experience the practical applications of inverse square law, time, distance and shielding. Different shielding effects will need to be realistically represented, for example, as will the effects of user body shielding for source location.

The consistency and repeatability of the simulation will be vital in ensuring that trainees are able to repeat the same scenario, in the same location, and receive the same result – and that the readings obtained on different types of simulator are within the accepted tolerances of the actual detectors.

From the trainer’s perspective, the whole life cost of ownership of the device will undoubtedly be an important consideration.

It may be important, for example, that the simulator uses only the same batteries as the original detector, that it requires no regular calibration and that there is no need for costly and time-consuming preventative maintenance.

The development of innovative simulator detector technologies, such as Argon’s RadEye SIM, offers the opportunity for first responders to enhance the timeliness, precision and effectiveness of their response to radiological emergencies.

For radiation safety instructors there is also the benefit of being able to create highly realistic and compelling radiation training exercises that are free from regulatory, environmental and health and safety concerns.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

Hazardous Waste & Environmental Response Conference – November 25th & 26th

The Hazardous Waste & Environmental Response Conference is scheduled for November 25th & 26th at the Mississauga Convention Centre in Mississauga, Ontario.  The event is co-hosted by the Ontario Waste Management Association and Hazmat Management Magazine.

This 2-day conference provides an essential and timely forum to discuss the management of hazardous waste and special materials, soils and site remediation, hazmat transportation, spill response and cutting-edge technologies and practices. Valuable information will be provided by leading industry, legal, financial and government speakers to individuals and organizations that are engaged in the wide range of services and activities involving hazardous and special materials.

Attendees can expect an informative and inspiring learning and networking experience throughout this unique 2-day event. Session themes provide an essential and timely forum to discuss the management of hazardous waste and special materials, soils and site remediation, hazmat transportation, spill response and cutting-edge technologies and practices.

As the only event of its kind in Canada, delegates will receive valuable information from leading industry, legal, financial and government speakers who are actively engaged in a wide range of services and activities involving hazardous waste and special materials.

Company owners, business managers, plant managers, environmental professionals, consultants, lawyers, government officials and municipalities – all will benefit from the opportunity to learn, share experiences and network with peers.

CONFERENCE SCHEDULE

MONDAY, NOVEMBER 25 – GENERAL SESSIONS

8:00 am – Registration

8:45 am – Opening and Welcome Address

9:00 am – 9:40 am

OPENING KEYNOTE – Lessons Learned from Hazmat Incidents

Jean Claude Morin, Directeur General, GFL Environmental Inc.

Dave Hill, National Director Emergency Response, GFL Environmental Inc.

Jean Claude and Dave will discuss lessons learned from hazmat incidents in Canada, including, train derailments, truck turn-overs, and hazardous materials storage depot explosions. This presentation will also provide an overview of some of the more serious incidents in Canada and discuss the valuable lessons learned regarding best practices in hazmat response.

9:40 am – 10:10 am

Legal Reporting Requirements

Paul Manning, LL.B., LL.M, Certified Specialist in Environmental Law and Principal, Manning Environmental Law

Paul will provide an overview of the Canadian federal and Ontario legislation as it relates to the reporting requirements in the event of a hazmat incident and/or spill. Included in the discussion will be an examination of the case law related to hazmat incidents and failure to report.

10:10 am – 10:45 am – Refreshment Break             

10:45 am – 11:15 am

Hazmat and Spill Response Actions and the Utilization of Countermeasures

Kyle Gravelle, National Technical Advisor, QM Environmental

Kyle will be speaking on hazmat and spill response actions and countermeasures to prevent contamination. Included in the presentation will be real-world examples of incidents in Canada and advice on preparations and hazmat management.

11:15 am – 12:00 pm

PANEL DISCUSSION: Utilization of New Technologies for HazMat Emergency Response

Moderator:  Rob Cook, CEO, OWMA

James Castle, CEO & Founder, Terranova Aerospace

Bob Goodfellow, Manager, Strategic Accounts & Emergency Response, Drain-All Ltd.

Ross Barrett, Business Development/Project Manager, Tomlinson Environmental Services Ltd.

The hazmat and environmental response sector is quickly evolving. During this discussion, panelists will share their experiences on new technologies and methodologies for the management of hazmat and environmental incidents and provide advice on what companies should do to be better prepared for hazmat incidents.

12:00 pm – 1:30 pm – Luncheon Speaker

From Hacking to Hurricanes and Beyond – The New Era of Crisis Communications

Suzanne bernier, CEM, CBCP, MBCI, CMCP, President, SB Crisis Consulting, Founder & Author of Disaster Heroes

During any crisis, communicating effectively to all key stakeholders is key. This session, delivered by a former journalist and now award-winning global crisis communications consultant, will look at the evolution of crisis management and crisis communications over the past 15 years. Specific case studies and lessons learned from events like the recent terror and mass attacks across North America, as well the 2017 hurricane season will be shared, including Texas, Florida and Puerto Rico communications challenges and successes. The session will also review traditional tips and tools required to ensure your organization can communicate effectively during any crisis, while avoiding any reputational damage or additional fall-out that could arise.

1:35 pm – 2:15 pm

Fire Risk in Hazmat and Hazardous Waste Facilities – The Impact and Organizational Costs 

Ryan Fogelman, Vice President of Strategic Partnerships, Fire Rover

Fire safety is an important responsibility for everyone in the hazardous materials & waste sector. The consequences of poor fire safety practices and not understanding the risk are especially serious in properties where processes or quantities of stored hazmat and waste materials would pose a serious ignition hazard.

In an effort to prevent fires and minimize the damage from fires when they occur, owners, managers and operators of hazmat and related facilities will learn about fire safety and how to develop plans to reduce the risk of fire hazards.

Learn about:

  • Data and statistics on waste facility fire incidents
  • Materials and processes that create a fire risk
  • Planning and procedures to reduce fire risk
  • Tools and practices to detect, supress and mitigate fire damage.

2:15 pm – 2:45 pm

Implementation of Land Disposal Restrictions (LDR) in Ontario – Treatment Requirements & Associated Costs

Erica Carabott, Senior Environmental Compliance Manager, Clean Harbours Inc.

The field of hazardous waste management in Ontario is complex and places an onus on all parties involved, including, generators, carriers, transfer and disposal facility operators. Initiatives such as pre-notification, mixing restrictions, land disposal restrictions, recycling restrictions and the requirements of the Hazardous Waste Information Network (HWIN) all add to the cumbersome task. The Landfill Disposal Restrictions (LDR) place responsibilities on generators and service providers alike. This presentation aims to navigate the implementation of LDR in Ontario, with specific emphasis on the Clean Harbors Sarnia facility to accommodate LDR treatment and the significant costs associated with it.

2:45 pm – 3:15 pm – Refreshment Break

3:15 pm – 4:00 pm

New Requirements on the Shipment of Hazardous Goods – Provincial, Federal and International   

Eva Clipsham, A/Safety Policy Advisor for Transport Canada

Steven Carrasco, Director, Program Management Branch, Ontario Ministry of the Environment, Conservation and Parks (MOECP)

Current federal and provincial frameworks for regulating the movement of hazardous waste and materials are currently undergoing change. Manifesting systems are being upgraded and refocused as electronic systems that will provide efficiencies to both generators and transporters. Learn about the current federal and provincial systems and the changes that are anticipated to be implemented in the near future.

4:00 pm – 5:00 pm – All attendees are invited to attend the Tradeshow Reception!

TUESDAY, NOVEMBER 26

8:30 am – Registration

8:45 am – Opening & Welcome Address

9:00 am – 9:45 am

Management of contaminated sites & increasing complexity and cost

Carl Spensieri, M.Sc., P.Eng., Vice President Environment, Berkley Canada (a Berkley Company)

This presentation will explore the various elements contributing to the increasing complexity and cost of managing contaminated sites. Carl will examine emerging risks and speak to potential strategies we can use to mitigate them. This presentation will also highlight opportunities for conference participants to offer new services that help owners of contaminated sites best respond to existing and emerging challenges.

9:45 am – 10:10 am – Refreshment Break

TRACK 1: HAZARDOUS WASTE GENERATION, TRANSPORTATION, TREATMENT AND DISPOSAL

10:15 am – 10:55 am

A National Perspective on the Hazardous Waste

Michael Parker, Vice President, Environmental Compliance, Clean Harbours Inc.

Hear about the challenges and opportunities facing the hazardous waste, hazmat and emergency response sector from an industry leader with a national view. The industry is evolving and the business fundamentals are ever changing. Government administrative and technical burdens are increasing and the volume of hazardous waste is declining – what will the future hold?

11:00 am – 11:40 am

PANEL DISCUSSION: Hazardous Waste & Special Materials – Transportation & Transit Challenges

Jim Halloran, Regional Manager, Heritage – Crystal Clean Inc.

Doug DeCoppel, EH&S Manager, International Permitting and Regulatory Affairs, GFL Environmental Inc.

Frank Wagner, Vice President Compliance, Safety-Kleen Canada Inc.

This panel will discuss key transportation issues and compliance challenges faced by hazardous waste generators and service providers, including significant changes to the documentation, labelling, packaging, emergency planning, and reporting requirements for hazardous waste and special materials shipments resulting from updated regulations and proposed initiatives. The panel will also review key considerations when selecting service providers to manage hazardous waste and special materials.

Topics included in this discussion: E-manifests (provincial and federal – lack of e-data transfer capabilities), HWIN fees (300% increase in fees but no increase in service), Transboundary Permits (lack of e-data transfer capabilities), container integrity and generator awareness.

11:45 am – 12:25 pm

Factors Influencing Treatment and Disposal Options for Hazardous Waste in Ontario

Ed Vago, Director of Operations, Covanta Environmental Solutions

Dan Boehm, Director of Business Development, Veolia ES Canada Industrial Services Inc.

Learn about the many recycling, treatment and disposal options for hazardous waste and hazardous materials in Ontario. Hear about the regulatory and operational factors to consider when deciding on the best management approach.

TRACK 2: SITE REMEDIATION

10:15 am – 10:55 am

Soils – Dig and Dump vs. On-Site Remediation: Factors to Consider & Case Studies

Devin Rosnak, Senior Client Manager & Technical Sales Manager, Ground Force Environmental

D. Grant Walsom, Partner, XCG Consulting Limited, Environmental Engineers & Scientists

Mark Tigchelaar, P. Eng., President and Founder of GeoSolv Inc.

Developers of brownfield site are faced with decisions around how to manage excavated soils. Impacted soils and soils with hazardous characteristics as tested at the site of generation can be managed through on-site remediation, or can be removed from the site to a variety of remediation and/or disposal options. Learn about the key options and factors that contribute to determining the optimum approach to managing soils.

11:00 am – 11:40 am

The Legal Framework for the Management of Contaminated Sites and Materials      

John Tidball, Partner, Specialist in Environmental Law, Miller Thomson LLP

The management of contaminated sites and related materials, including soils, are constrained by both regulatory and legal framework. Hear from a legal expert with unparalleled experience about the regulatory and legal issues that all developers/excavators transporters and service providers should be aware of as the legal liabilities in this area can be significant.

11:45 am – 12:25 pm

Anaerobic Bioremediation & Bioaugmentation – from the Lab to the Field

Dr. Elizabeth Edwards (Professor), Dr.Luz Puentes Jacome, Dr. Olivia Molenda, Dr. Courtney Toth, Dr. Ivy Yang (all Post doctoral fellows in the lab), Chemical Engineering & Applied Chemistry, University of Toronto

Together with her Post-Doctoral team, Dr. Edwards will present an overview of anaerobic bioremediation and bioaugmentation with some examples from their research and its application to the field.

12:30 pm – 2:00 pm

CLOSING KEYNOTE & LUNCHEON SPEAKER

Andrea Khanjin, MPP Barrie-Innisfil, Parliamentary Assistant, Ministry of the Environment, Conservation and Parks (MOECP)


Diamond Sponsor

 

 

 

 

 

Emerald Sponsor

 

 

 

 

Supporting Sponsors

 

 

 

 

 

 

 

 

 

 

Researchers scaling up technology that destroys PFAS contamination

Researchers from the University of Purdue recently received funding from the U.S. Environmental Protection Agency (U.S. EPA) to scale up a patented technology that can destroy poly- and perfluoroalkyl substances (PFAS) in groundwater.

PFAS include perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and other perfluoroalkyl acids (PFAAs) and are found at more than 600 military training sites across the United States where firefighter training involved the use of PFAS-containing foams. They also are found at airports, which use similar chemical foams to put out fires.

PFAS have been linked to cancer, thyroid dysfunction, liver disease, immune system impairment, and other serious medical concerns. The compounds also are found in contaminated drinking water.

Linda Lee, a professor of agronomy in Purdue’s College of Agriculture, has patented a technology that destroys PFAS through the use of a permeable reactive barrier constructed in the subsurface.  Ms. Lee stated, “Our approach is different from current technologies, which are focused on capture and not destruction. We target compound destruction with a design that has potential to be used as part of a permeable reactive barrier underground to eradicate these compounds in groundwater to keep them from spreading.”

compounds graphic

“This is a significant problem because these compounds, which are found in our blood, drinking water, homes and products, do not degrade naturally,” Lee said. “Our team has patented technology involving the use of nickel and iron nanoparticles synthesized onto activated carbon to capture, attack and destroy the compounds.”

Recently, Lee’s team received part of a $6 million science to achieve results grant from the U.S. Environmental Protection Agency to address the issue of the compounds ending up in waste streams and eventually drinking water. The latest award comes after the team received earlier funding from the National Science Foundation and the Department of Defense. The team’s recent work also has included international partnerships in Pakistan through The National Academies of Sciences, Engineering and Medicine.

Lee patented her nanoparticle innovation through the Purdue Research Foundation Office of Technology Commercialization. She is looking for additional partners to help scale up the work.

 

Business Opportunity: U.S. EPA’s Solicitation for Small Business Innovation Research

The United States Environmental Protection Agency (U.S. EPA) is calling for small businesses to apply for Phase I awards up to $100,000 to demonstrate proof of concept environmental technology. The solicitation is open the U.S. companies that have a ground-breaking idea that can be commercialized. The areas of interest to the U.S. EPA with respect to funding can be found below.

CLEAN AND SAFE WATER

  • Sampling devices for microplastics
  • Technologies for the rehabilitation of water infrastructure
  • Technologies for the destruction of PFAS in water and wastewater
  • POU treatment for opportunistic pathogens
  • Technologies for detection and treatment of antibiotic resistant bacteria in wastewater
  • Treatment for cyanobacteria and cyanotoxins in drinking water
  • Resource Recovery for Decentralized Wastewater Systems

AIR QUALITY

  • Air monitoring technology for Ethylene Oxide
  • Air monitoring technology for Sulfur Dioxide

LAND REVITALIZATION

  • Mining site characterization and remediation

HOMELAND SECURITY

  • 3-D Gamma Camera to Map Radiological Contamination
  • Water distribution and stormwater system sensors

SUSTAINABLE MATERIALS MANAGEMENT

  • New Applications for Industrial Non-Hazardous Secondary Materials
  • Preventing Food Waste

SAFER CHEMICALS

  • Safer paint and coating removal products

Phase II Funding and Deadline for Applications

Successful Phase I companies are eligible to apply for Phase II funding, which awards up to $400,000 for two years with a commercialization option of up to $100,000, to further develop and commercialize their technologies.

Last year, the U.S. EPA awarded Small Business Innovation Research (SBIR) Phase I contracts to 23 small businesses across the United States to develop technologies that provide sustainable solutions for environmental issues. These SBIR Phase I recipients are creating technologies that improve water infrastructure, air quality and homeland security.

More information on the solicitation can be found here. Applications are due by July 31, 2019.

New Brunswick Marine Research Centre to study impact on spill clean-up chemicals on aquatic life

The Canadian Ministry of Fisheries, Oceans and the Canadian Coast Guard recently announced that it is investing $2.4 million in scientific research at the Huntsman Marine Science Centre in New Brunswick.

With this investment, the Centre will study how spill response measures, such as the use of dispersant chemicals, affect fish and other aquatic species of interest. The goal of the project is to ensure the use of effective response measures, without harming ocean life in the event of a spill.

The Huntsman Marine Science Centre is located in St. Andrews, New Brunswick. The Centre is engaged in a broad range of marine science and applied research initiatives.

Huntsman Marine Science Centre (Source: huntsmanmarine.ca)

U.S. DOE seeking contractor to provide supplemental organic treatment at Superfund Site

The United States Department of the Energy (U.S. DOE) Washington River Protection Solutions LLC recently issued an Expressions of Interest (EOI) from contractors capable of providing a supplemental organic treatment system for one the 200 Area effluent treatment facility (ETF) at the Hanford Superfund Site.

The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington.

The main treatment train at ETF currently eliminates the hazardous characteristics of the waste and allows for delisting the effluent. Beginning around January 2022, the ETF will receive a new wastewater stream that will be generated nearly continuously for a period of ~40 years and is anticipated to contain at least four organic constituents-acetonitrile, acrylonitrile, acetone, and methylene chloride-in concentrations that exceed the expected performance range for the existing system.

Input is requested from Industry to enable an evaluation of an off-the-shelf procurement and a procurement/design activities solution to meet the future requirement. Expressions of interest are due by 9:00 AM PT on May 6, 2019.

More information is available here: https://www.fbo.gov/spg/DOE/CHG/ORP/EOI-KJF-19-04-01/listing.html

About the Hanford Site

Established in 1943 as part of the U.S. Manhattan Project in Hanford, south-central Washington, the site was home to the B Reactor, the first full-scale plutonium production reactor in the world.

Most of the reactors were shut down between 1964 and 1971. The last reactor at the Hanford site operated until 1987. Since then, most of the Hanford reactors have been entombed (“cocooned”) to allow the radioactive materials to decay, and the surrounding structures have been removed and buried.

In 1989, the State of Washington (Dept. of Ecology), the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE) entered into the Tri-Party Agreement which sets targets, or milestones, for cleanup. The U.S. EPA and State of Washington Dept. of Ecology share regulatory oversight based on Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also referred to as Superfund) and the Resource Conservation and Recovery Act (RCRA).

The U.S. Department of Energy (DOE) Office of River Protection (ORP) operates the 200 Area ETF. The ETF has been treating wastewaters from processing activities at the Hanford Site since 1994. The main treatment train at ETF includes, in order: pH adjustment; coarse filtration; ultraviolet/hydrogen peroxide oxidation (UV/OX); pH adjustment; excess peroxide decomposition; degasification; fine filtration; reverse osmosis (RO); and, ion exchange (IX).

To date, $15 billion (U.S.) has been spent on clean-up efforts at the Hanford site. In 2014, the estimated cost of the remaining Hanford clean was $113.6 billion (U.S.). Clean-up was estimated to occur until 2046. There are over 10,000 workers on site to consolidate, clean up, and mitigate waste, contaminated buildings, and contaminated soil.

New Cleantech innovations reduce emissions from vehicles and suppress dust at industrial sites

dynaCERT Inc and H2 Tek have taken home the $5,000 top prize at the Mining Cleantech Challenge in Denver, the Colorado Cleantech Industries Association (CCIA) has reported.

The two companies’ technology were chosen by mining executives and investors in the industry as the best among a competitive field of 12 total companies representing the US, Canada and Israel, the CCIA said. An international team of judges reviewed and voted on the winners, the CCIA said.

dynaCERT’s HydraGEN™ turns distilled water into H2 and O2 gases on-demand and introduces these gases directly to diesel engines’ air intakes. H2 Tek Vice President of Sales and Marketing, David Van Klaveren, said: “Our technology, HydraGEN can actually improve significantly those carbon emissions, reduce them and, along the way, pay for the capital cost of all this through fuel efficiency savings.

“We can’t ignore the fact that clean technology is an important part of our responsibility as participants and members of this industry, the mining industry,” he said. “I think it’s remarkable that an association considers this a priority: bringing together companies that have innovation for an extremely important cause.”

Hydrocarbons and CO2 are reduced due to the absence of carbon in hydrogen fuel and also due to better combustion of diesel fuel with the aid of hydrogen which has a higher flame speed, dynaCERT said.

“Although CO values for neat diesel operation is relatively lower, by inducting H2 & O2 into diesel the CO amount is further reduced,” dynaCERT said. dynaCERT has created partnerships to perfect a technology that would deliver on the promising findings with H2 & O2 injection. Not only have we developed patent-pending technology, we have completed testing and have validated that our technology works.”

Some of the features delivered through the technology, dynaCERT said:

  • “Our patent-pending electrolysis system and Smart ECM provides a reliable and adjustable delivery of H2 & O2 concentrations. Not all engines are the same and having the optimal ratio of gases provides increased benefits;
  • “Our technology is scalable allowing use with Class 6-8 on-road vehicles and transition to applications with rail, marine, off-road and power generation;
  • “Our technology is leading edge and provides solutions without drawing excessive power to perform the task;
  • “It is designed to work with OEM manufacturer’s and compliment technological improvements.”

Earth Alive Clean Technologies

Second place in the cleantech competition went to Earth Alive Clean Technologies, a microbial dust control technology that is non-hazmat, 100% organic and has biodegradable properties.

Earth Alive offers EA1TM dust suppressant and RapidAll cleaner to remove dust, dirt and any other contaminant in a natural way. EA1 eliminates 90% of dust on work sites.

EA1TM reduces dust through the use of microbial technology to keep dust particles in the soil. EA1TM reintroduces natural microbial strains compounds already found in nature into the ground to create conditions that prevent dust from becoming airborne, while helping to retain soil moisture. Microbial spores are activated after application and thrive in the soil binding soil particles and creating a firm and resistant layer preventing dust emission.

Using Block Chain Technology to Track Hazardous Materials

There is increasing focus on the utilization of Blockchain technology which you can learn more about at websites similar to cryptoevent.io if you’re interested in trading the currency to track hazardous materials and hazardous waste. Blockchain technology allows for a system where records can be stored, facts can be verified by anyone, and security is guaranteed. The software that would power such a system is called a “blockchain”.

Blockchains store information across a network of computers making them both decentralized and distributed. This means no central company or person owns the system and that everyone can use it and help run it. This makes it extremely difficult for any one person to take down the network or corrupt it. This is why it’s so beneficial for so many industries to use blockchain software, such as blockchain technology in real estate. And let’s not forget this is another of the reason why many people enjoy buying bitcoin from websites similar to bitcoin.com.au. So they can analyze and develop new blockchains off of the lessons that can be learned from taking a deeper look at the most popular blockchain technology at the moment.

In essence, a blockchain is a super-secure digital ledger, where transactions records are kept chronologically and publicly. According to experts, the technology would also make it easier to track shipments of hazardous materials and waste. It could even help with regulatory compliance.


The management of hazardous materials/waste through blockchain would result in more open and coordinated movement among generators, transporters, users, and and recyclers. It would also enable the government to more efficiently and openly regulate hazardous materials movement and hazardous waste management. The imbalance between the organized and unorganized sectors would shrink and lead to increased transparency throughout the process.

Tracking Waste Using Blockchain Technology

The technology that powers cryptocurrencies like bitcoin are slowly making way into hazardous materials transportation and hazardous waste management.

As reported in Hacker Noon, Jody Cleworth, the CEO of Marine Transport International said, “The shipping of recovered materials is necessarily heavily regulated, and we’ve had a real impact in simplifying the process while remaining compliant.” Marine Transport International is a New Jersey-based freight forwarder. The company just completed a successful blockchain pilot. This pilot created a common tracking system linking up recycling suppliers, port operators, and ocean carriers.

Phil Rudoni, Chief Tech Officer at Rubicon said that “A big issue the waste industry faces is the lack of accountability for the end destination of recycled material. Rubicon is an Atlanta-based tech startup that provides cloud-based recycling and waste services.

It has always been a challenge to track hazardous materials and waste. With blockchain, it is believed that it would be much easier. It wouldn’t be so difficult to design a system where hazardous materials could be tagged with scannable Quick Response or QR-Codes (two-dimensional barcode) and then tracked at each step of the recycling supply chain. The tracking could be done by the generator, regulator, receiver, the general public, and any other interested person.

Examples of blockchain technology in waste management

The Several waste initiatives have seen the potential of incorporating blockchain technology. One if such initiative is the Plastic Bank, a global recycling venture founded in Vancouver by David Katz and Shaun Frankson. Its main aim is to reduce plastic waste in developing countries like Haiti, Peru, Colombia, and the Philippines. It has plans to extend it’s territory this year.

The Plastic Bank initiative pays people who bring plastic rubbish to bank recycling centers. One payment option is the use of blockchain-secured digital tokens. The tokens can be used to purchase things like food or phone-charging units in any store using the Plastic Bank app.

The plastic brought into the Plastic Bank is bought by companies and recycled into new consumer products. This system is more attractive because blockchain’s transparency means all parties can see and monitor where their effort and/or investment goes.