Hanna, Alberta interested in hosting Biomedical Waste Facility

The Town Council of Hanna, Alberta has expressed interest in the potential of a biomedical waste facility in the municipality.  As reported in the Hanna Herald, Council authorized Mayor Chris Warwick to provide a letter of support to GM Pearson regarding the Cactus Corridor Region interest in having the company establish a Biomedical Waste Incinerator Business in the region.

GM Pearson is an Alberta-based company that provides biomedical waste disposal services.  The company handles biomedical waste from its removal and transportation to its final, safe disposal. The company provides incineration and autoclaving at its Alberta Environmentally Approved facilities.

GM Pearson had proposed an 8,000 tonne per year biomedical waste incinerator in Beiseker, approximately 100-km west of Hanna, but it was met with fierce public opposition.  That plan fell through after the county denied the development permit, saying the site had insufficient infrastructure and water to service the proposed plant.

A human health study commissioned by the company and authored by Dr. Warren Kindzierski, an associate professor of environmental health sciences at the University of Alberta, states that while older studies about older incineration facilities do suggest evidence of health impacts to people who live near waste incinerators, recent studies suggest modern facilities don’t pose the same risk.  “Public concern about health risks is not justified for potential exposure to dioxins and furans and other chemical substances that are emitted by modern, well-run incinerators equipped with modern pollution control technologies,” the analysis reads.

The town has approximately 2,500 residents and is located in east-central Alberta.  If built, the incinerator has the potential ti create 22 full-time jobs, as well as contractor work, and provide tax revenue to the town. The mayor of Hanna, Chris Warrick, noted in a letter to GM Pearson that there are two sites within Special Areas that would be a good fit with the biomedical waste incinerator, as they met the zoning requirement, are in close proximity to major transportation corridors, are near utility infrastructure and regional landfills, and have compatible neighbouring land use.

British Columbia launches fund to support cleaner industry, reduce emissions

The Government of British Columbia recently announced that it has created a CleanBC Industry Fund that will invest the money raised through carbon taxes on projects throughout the province.  The province has put $12.5 million into the fund and expects that additional contributions from industry will raise the total fund value to more than $55 million this year.

Provincial funding will support a range of projects throughout  B.C., including new electro-coagulation technology at Harmac Pacific’s employee-owned pulp mill in Nanaimo. The project will improve the waste-treatment process and reduce the use of natural gas to power a bio-mass boiler on site.

“The CleanBC Industry Fund is helping Harmac Pacific improve the way we operate our pulp mill by moving away from fossil fuels and reducing our emissions,” said Levi Sampson, president, Harmac Pacific. “The investment from the Province will help us treat mill waste more efficiently using cleaner technology while supporting good local jobs in Nanaimo.”

Harmac Pacific’s Northern Bleached Softwood Kraft (NBSK) pulp mill near Nanaimo, B.C.

This year’s initial slate of CleanBC Industry Fund projects is expected to reduce approximately 700,000 tonnes of carbon dioxide equivalent (CO2e) over the next decade – roughly the same as taking 250,000 cars off the road for a year. Additional projects will be announced in early 2020 following signing of funding agreements.

To be eligible for funding, CleanBC Industry Fund applicants must have emissions over 10,000 tonnes of CO2e per year and be a reporting facility under the Greenhouse Gas Industrial Reporting and Control Act. Successful projects were chosen based on a competitive process and an evaluation of detailed project plans, business cases and the potential to cost-effectively reduce emissions.

CleanBC is the province’s pathway to a more prosperous, balanced and sustainable future. It was developed in collaboration with the BC Green Party caucus, and supports the commitment in the Confidence and Supply Agreement to implement climate action to meet B.C.’s emission targets.

The next Request for Proposals (RFPs) is expected to open in early 2020.  Proposals will be evaluated based on criteria described in the RFP, and funding will be awarded to the highest-ranked projects, subject to funding availability. For a Proposal to be considered for funding, an applicant must clearly demonstrate that they meet the requirements as set out in the RFP.

Ontario’s Proposed Excess Soil Regulations: Effects & Benefits

Written by Abimbola Badejo, Staff Writer

Where do the soils excavated from our
basements go? Our backyards, neighbors’ backyards or into our drinking water?

Background

Soil is an important natural resource that needs to be conserved for sustainability and hygienic reasons. Numerous activities and projects such as construction, mining, contaminated site remediation, expansive archaeological projects, etc., require soil excavation.

The excavated soil is used to refill the vacant land or removed from the project site as “excess soil” left over from a project. The disposal of excavated soil however, posses a challenge for the contractors undertaking the projects as the receiving sites or facilities for excess soils are either far, unavailable or result in expensive transportation costs.

In certain instances, this problem has resulted in illegal dumping of excess soils onto farmers fields and vacant lands across Ontario, without the appropriate consideration of soil quality or dumping location. A 2018 CBC story on illegal dumping estimated the amount of illegal soil dumped in Ontario could annually fill Rogers Centre, home of the Toronto Blue Jays, sixteen times.

Aerial view of Rogers Centre, Toronto (Photo by Tim Gouw from Pexels)

Previous Government Reactions

To tackle the problem of illegal excess soil dumping, the Ontario Environment Ministry released a guidance document titled: “Management of Excess Soil – A Guide For Best Management Practices.” There was no obligation for compliance to the guidance document and thus the illegal practice continued.

With illegal dumping continuing in the province, the Environment Ministry released of a legal document which required compliance. The legal document, Regulatory Framework on Excess Soil Management, was made to clarify the responsibilities of excess-soil generators and a list of requirements guiding the sampling and analysis, soil characterization, tracking and dumping of excess soils. The Excess Soil Management proposal was posted on the Environmental Registry of Ontario for public comments from concerned stakeholders for two months in 2017; and afterwards an amended proposal implementing changes influenced by the comments was released.

The Latest Regulatory Proposal

With the Ontario election in the June of 2018 resulting in a change of government, the regulatory proposals for excess soil management were put on hold. On May first, the government issued its an updated proposal for the management of excess soil.

The proposed Excess soil regulatory proposal and amendments to Record of Site Condition (Brownfields) Regulation have the following features:

  • A revised approach to waste designation, where excess soil is
    considered waste and should be treated as one according to Part V of the Environmental Protection Act 1990 (Waste
    Management); unless the relocated excess-soil is reused in an appropriate way
    or is deposited at a final receiving site that has appropriate approval
    documents,
  • Reduced regulatory complexity, where waste related approvals
    for low-risk soil management activities may no longer be required, provided
    certain requirements are met,
  • Flexibility for soil reuse through a beneficial Reuse
    Assessment Tool to develop site-specific standards and to provide a better
    understanding of environmental protection,
  • Improving safe and appropriate reuse of excess soil by
    quality soil testing, tracking and registration of soil movements for larger
    and riskier generating and receiving sites,
  • Landfill restrictions on clean soil deposit unless it is
    required for cover.

Once promulgated, the transition phase into the new regulations will take place over the period of 2 to 3 years, where the more flexible excess-soil reuse regulations, such as the amended Record of Site Conditions (O. Reg. 153/04), are already in effect. Other amendments, such as excess soil management planning and landfilling restrictions will come into effect between 2020 and 2022, to allow time for the production of alternative excess soil reuse approaches.

Benefits of
Policy

From an environmental perspective,
the proposal’s call for some regulatory key points are quite sustainably
beneficial. Registering and tracking the excess soil movement from excavation
source to receiving site or facility will minimize illegal dumping.
Transporting and illegal dumping of the excess soils is a source of concern
because excavated soil is a source of trapped Greenhouse Gases (GHG).
Inappropriate tipping of a considerable amount of excess soil will result in
the release of a significant amount of GHG in the atmosphere. Moreover,
vigorous testing and analysis of the excess soils meant for landfill will
ensure that contaminated soil is properly disposed of as hazardous waste,
instead of illegally covering it up at a landfill where is poses a threat as a
potential source of contamination to ground water.

Excess Soil
Market Impact

Economically, implementing the excess soil management policy will be beneficial to contractors and will encourage them to be more proactive in making their Excess Soil Management Plan (ESMP) in favor of excess soil reuse. This will assist in developing alternative, better and cheaper ways of reusing their excess soils; or selling off some (or all) of the excavated soils to a buyer,  who will put it to good use.

In addition, there has been a report of excess soil “black market” emergence in the industry; where contractors are avoiding the higher costs of tipping at provincially regulated designated facilities in exchange for illegal tipping at ignorant landowners’ fields. These landowners are receiving the excess soils at a small fee from the contractors, without consideration for the quality of the soil and possible environmental effect in the future. Implementation of the policy will minimize the expansion of this market, especially because of the registration and tracking requirements of the excess soil load and the approval documents required of the receivers.

U.S. EPA Updates the Superfund National Priorities List

The U.S. Environmental Protection Agency (U.S. EPA) recently announced that it is adding seven sites to the Superfund National Priorities List (NPL) where releases of contamination pose human health and environmental risks.

The NPL includes the United States’ most serious uncontrolled or abandoned releases of contamination. The list serves as the basis for prioritizing U.S. EPA Superfund cleanup funding and enforcement actions. Only releases at sites included on the NPL are eligible to receive federal funding for long-term, permanent cleanup.

“By adding these sites to the National Priorities List, we are taking action to clean up some of the nation’s most contaminated sites, protect the health of the local communities, and return the sites to safe and productive reuse,” said U.S. EPA Administrator Andrew Wheeler. “Our commitment to these communities is that sites on the National Priorities List will be a true national priority. We’ve elevated the Superfund program to a top priority, and in Fiscal Year 2018, EPA deleted all or part of 22 sites from the NPL.”

The following sites are being added to the NPL:

· Magna Metals in Cortlandt Manor, New York

· PROTECO in Peñuelas, Puerto Rico

· Shaffer Equipment/Arbuckle Creek Area in Minden, West Virginia

· Cliff Drive Groundwater Contamination in Logansport, Indiana

· McLouth Steel Corp in Trenton, Michigan

· Sporlan Valve Plant #1 in Washington, Missouri

· Copper Bluff Mine in Hoopa, California

McLouth Steel Corp in Trenton, Michigan (Photo Credit: CREDIT TRANSKOHR / WIKIMEDIA COMMONS)

Superfund cleanups provide health and economic benefits to communities. The program is credited for significant reductions in birth defects and blood-lead levels among children living near sites, and research has shown residential property values increase up to 24% within 3 miles of sites after cleanup.

Redeveloped Superfund sites can generate a great deal of economic activity. Thanks to Superfund cleanups, previously blighted properties are now being used for a wide range of purposes, including retail businesses, office space, public parks, residences, warehouses, and solar power generation. At 529 Superfund sites returned to productive use, 8,600 businesses operate and 195,000 employees earn more than $13 billion in annual income.

The Superfund Task Force is working to improve the Superfund program. The U.S. EPA has implemented nearly half of the Task Force’s recommendations to expedite site cleanups and redevelopment and expects to complete the remaining recommendations by July 2019.

Source: U.S. EPA

Windsor provides $10.5 million in incentives to develop brownfield site

Farhi Holdings Corporation has been approved for almost $10.5 million in financial incentives from the City of Windsor as part of the Brownfield Redevelopment Community Improvement Plan.

The developer has owned a 24.5 hectare (60 acre) piece of vacant land next to the WFCU Centre, Windsors sports and entertainment complex, since 2005. It had been zoned industrial and had been the home of a GM trim plant and other industrial operations.

Farhi is working toward developing the site as office/retail/commercial space that will include 119 detached residential lots, four townhouse blocks, five multiple dwellings buildings, and a hotel. Approximately 3.1 hectares will remain for commercial development. The redevelopment is estimated to cost $59 million. The company is anticipating that work at the site will begin in the Fall.

The 24.5 hectare property represents approximately 11 percent of the City of Windsor’s brownfield inventory. It’s location next to the WCFU Centre makes it an ideal redevelopment opportunity.

The Windsor Brownfield Redevelopment Community Improvement Plan is designed to encourage the development of brownfields by offering incentives for development. In case of the Farhi Holdings property, the
$10.5 million in incentives from the City of Windsor will be in the form of tax breaks over a 13 year time period.

Farhi Holdings had a consultant conducted an environmental site assessment and estimate the cost of remediation. The environmental report estimates that 31,215 cubic metres of contaminated soil will need to be removed and replaced with clean fill. The total estimated cost for remediation and demolition work at the property is $6.4 million.

One section of the property (the area for the proposed hotel) has already been remediated and is not part of brownfield redevelopment incentive agreement. The hotel, once built, would generated between $380,000 to $450,000 in annual property tax revenue to the City.

A search of the Record of Site Condition (RSC) registry shows that one has not yet been filed for the property – 1600 Lauzon Road. Typically, an RSC is required prior a property zoning being changed. An RSC is a record of the site conditions and includes information on any remedial activity and the level of contamination at a site.

Farhi Holdings Corporation is a real estate and development company based in London, Ontario. The company was founded in 1988.

Saskatchewan Accepting Applications for government funding of Contaminated site Clean-ups

The Environment Ministry of Saskatchewan recently announced that it was accepting applications from municipalities for funding to clean-up contaminated sites.

Critics claim the paltry $178,000 in the fund is barely enough to cover the costs of the clean-up of one site. The source of money in Saskatchewan’s Impacted Sites Fund are the fines collected under The Environmental Management and Protection Act, 2010. 

Administered by the Saskatchewan Ministry of Environment, the fund provides financial support to municipal governments to clean up these sites so they can be used for future economic or social development opportunities.  An abandoned, environmentally impacted site is an area, such as a former gas station or laundromat, that has been contaminated.

“In addition to the obvious environmental and human health benefits of cleaning up contaminated sites, the Impacted Sites Fund will allow communities to use those sites for other, economically beneficial purposes,” Environment Minister Dustin Duncan said.

Municipalities can apply for funding at the Saskatchewan Environment Impacted Sites Fund web page. Municipal governments and municipal partnerships, which may include municipally owned corporations, not-for-profit organizations, and private companies, are eligible to apply for project funding to clean up the contaminated sites using the Impacted Sites Fund. 

Applications are not funded on a first-come, first-served basis.  The Ministry of Environment will assess and rank the applications according to environmental, social, and economic factors.  First priority will be given to sites that pose the greatest risk to human or ecological health.

Leaking Sewers Cost City 50% of Dry Cleaner Site Cleanup Costs

Written by John A. McKinney Jr., Chiesa Shahinian & Giantomasi PC

Are you in a case where an on-site and off-site groundwater plume of dry-cleaning solution (perchloroethylene or PCE) or other hazardous substance is intersected by sewers through which the used and disposed of solution flowed? If so, the case of Mission Linen Supply v. City of Visalia (2019 WL 446358) bears your close review. It may also be time to get in touch with a professional plumbing company who may be able to provide the service of a sewer line cleanout, to prevent damage to the sewage system.

Based on the facts and expert testimony adduced at the bench trial, the court determined that: 1) the sewers were installed by the City were below general industry standards which can be better understood if you talked to a professional similar to a pipe lining company in San Diego; 2) the City sewers had numerous defects including holes and broken pipes, cracks, separated joints, missing portions of pipes, root intrusion and other conditions; and, 3) PCE was released into the environment as a result of these defects.

Pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (42 U.S.C. § 9601 et seq.), the two dry cleaners who operated at the site and the City were found liable. In allocating the future cleanup costs, the court determined the equitable basis for allocation was the plume itself. The prior dry cleaners were responsible for the on-site costs and the City was responsible for the off-site costs “because the City’s defective/leaking pipes transported and spread the PCE beyond the property boundaries.” 50% of future costs were assigned to the City.

A review of this case’s Findings of Fact show what expert testimony and evidence is necessary to reach the result reached by this court. The case is also a warning to municipalities with sewer lines intersecting cleanup sites or what could become cleanup sites. Do not fail to regularly and properly maintain your sewer systems.


This article has been republished with the permission of the author. It was first published on CSG’s Environmental Law Blog.

About the Author

John A. McKenney Jr. has been a frequent speaker at conferences and continuing legal education programs. For 18 years, John was on the faculty of Seton Hall University School of Law as an Adjunct Professor where he taught New Jersey Environmental Law. He also served as moderator of the ABA satellite seminar on Hazardous Waste and Superfund.

John is a co-editor of the ABA publication, CERCLA Enforcement – A Practitioner’s Compendium of Essential EPA Guidance and Policy Documents and co-authored the Generators’ Obligations chapter of the ABA’s RCRA Practice Manual. The standard form group agreement used at many remedial sites around the nation is based on a version he developed for The Information Network for Superfund Settlements.

Brownfield Redevelopment in New York City and Community Air Monitoring – What you need to know

Written by Paul R. Pickering, Aeroqual Ltd.

Brownfield cleanup in New York City

As New York City’s need for space grows, existing stock of land must be used more effectively. Brownfield cleanup and redevelopment represents one of the best opportunities to engage communities and reclaim land for development in many cities. In 2018, the Mayor’s Office of Environmental Remediation (MOER) announced 1000×21, the most aggressive land cleanup and revitalization goal of any city in the world. This OneNYCinitiative seeks to remediate and redevelop 1,000 lots in NYC by the end of the de Blasio administration in 2021.

A vacant lot in Mott Haven, NY before remediation. Photo: OneNYC

Remediation air quality challenges

Any time a remediation or construction project involves earth-moving, it has the potential to release particulate (dust) and volatile organic compounds (VOCs) contaminants that exist below the surface. VOCs will readily transition to the gaseous, breathable phase, when exposed to air. Particulate emissions must be controlled to prevent impacts to the respiratory system. Negative impacts range from mild lung irritation to chronic lung disease. 

Regulations to protect community

To protect workers and the surrounding community, construction and demolition projects that involve excavation need to follow a stringent Community Air Monitoring Plan(CAMP), as specified by the New York State Department of Health (NYSDOH). If the excavation activities are occurring on a remediation or cleanup site, additional requirements are outlined in a guidance document known as DER-10. NYSDOH and DER-10 specifically apply to sites in New York. However, agencies and authorities in other states may also recognize these guidelines. They have been known to apply or refer to them for projects in their designated territories.

What is DER-10?

In 2010, the New York State Department of Environmental Conservation (NYSDEC) issued Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation, known as DER-10. This is the source document the NYSDEC refer to for authority to oversee remediation projects. It was designed to help parties and consultants (environmental and engineering) in developing and implementing investigation and remediation projects at contaminated sites.

DER-10 extensively (over 225 pages) describes the A to Z requirements for remedial site investigations, cleanups, post-cleanup monitoring and site closure. It presents detailed technical guidance for each of the investigative and remedial steps undertaken at contaminated sites. DER-10 covers procedures for assessing the environmental conditions at the site, including air monitoring during remediation activities.

What is CAMP?

Appendix 1A of the DER-10 outlines requirements for the implementation of a CAMP. This air monitoring plan is prescribed by NYSDOH. It involves direct-reading air monitoring instruments placed at defined locations around the perimeter of a remediation, construction or demolition site.

A CAMP requires real-time air monitoring for total VOCs (also referred to as total organic vapors) and PM10 (particulate matter 10 micrometers or less in diameter) at downwind and upwind locations relative to each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, it is intended to protect the downwind community) from potential airborne contaminants released as a direct result of investigative and remedial work activities. The downwind community includes off-site receptors such as residences, businesses, and on-site workers not directly involved with the subject work activities. The specified CAMP action levels require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

VOC and particulate monitoring

Basic requirements of a CAMP call for real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone, or work area. Sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary in consultation with NYSDEC and NYSDOH. The table below summarizes CAMP Monitoring Action Levels for total VOC and particulate monitoring.

CAMP air monitoring equipment

Since the introduction of DER-10 in 2010, sensor-based technologies have reduced the cost of air monitoring and increased efficiency of the implementation of CAMP. Real-time air monitoring solutions are available to fit the budget and complexity requirements of every project. Below is a sampling of equipment options:

Entry Level – Basic environmental dust monitoring kit

Assembled kits, like this Basic Environmental Dust Monitoring Kit from Raeco Rents, are portable and suited to short-term or temporary CAMP. The ensemble includes an off-the-shelf dust monitor, handheld PID monitor for total VOCs, and a cloud-based telemetry system mounted in an environmental enclosure.

Ultimate Flexibility – All-in-one air quality monitor

All-in-one air quality monitors, like the AQS1 and the Dust Sentry from Aeroqual, are highly flexible and defensible, as well as good allrounders for short or long-term CAMP. In addition to the primary particulate fraction PM10, these monitors can also measure PM2.5, PM1 and Total PM. They can also be configured for monitoring total VOCs and NO2 emissions from remediation and construction sites. A robust light-scattering Nephelometer with sharp cut cyclone is integrated with a PID-based VOC analyzer module (or GSE-based NO2 gas module), Cloud telemetry platform, air quality software, and optional plug-and-play weather and noise sensors. Trigger alerts are programmable for SMS and email notifications, or can be used to activate an external VOC canister sample collection for speciated analysis according to EPA Method TO-15.

The Rolls Royce – GC-based perimeter air monitoring station

Perimeter air monitoring stations, like the AirLogics Classic 2, contain analytical, climatic, and communications instrumentation. This equipment includes: a gas chromatograph (GC) to measure specific VOCs, a respirable particulate meter to measure dust levels, shelter heaters and air conditioners, and a radio-based data acquisition system. These systems were originally developed for use in the cleanup of former manufactured gas plant (MGP) sites.

Weather monitoring

DER-10 guidelines require daily measurement of wind speed and direction, temperature, barometric pressure, and relative humidity, to establish background weather conditions. Wind direction data is used to position the air monitoring equipment in appropriate upwind and downwind locations.

The evaluation of weather conditions is also necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with more stringent action levels.

Additional monitoring

Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the community. Additional integrated sampling and chemical analysis of the dust may be required. This must be evaluated when a Health and Safety Plan (HASP), is developed. Appropriate suppression and monitoring requirements are established for protection of people’s health and the environment.

Reporting

All recorded monitoring data is downloaded and field logged daily, including Action Limit Reports (if any) and daily CAMP monitoring location plans. Records are required to be maintained onsite for NYSDEC and NYSDOH to review. A description of the CAMP-related activities is also included in a monthly progress report submitted to the NYSDEC. The overall report submitted to the NYSDEC should include all CAMP monitoring records. If site works are stopped due to inability to control fugitive emissions to below the action limit, the NYSDEC is to be notified within twenty-four hours of the work stoppage.

For a real-life example of air monitoring at a remediation site please read my blog about the pilot cleanup of the Gowanus Canal, NY.

What CAMP solutions does Aeroqual offer?

Aeroqual’s Dust Sentry and AQS1 are flexible air monitoring platforms used by air quality professionals, and environmental and geotechnical consultants, for community air monitoring plans on remediation sites. We help environmental consultants deliver defensible data on projects by providing cost-effective and reliable instrumentation. For insights on the latest air monitoring trends at construction sites please read our blog about measuring NO2 and multiple PM fractions.


About the Author

Paul R. Pickering is the Business Development Director at Aeroqual Ltd., and is located in Auckland, New Zealand. Aeroqual Ltd. is a company that delivers innovative air quality and environmental monitoring solutions. He is passionate about making it easier to measure the air with advanced sensor-based technology. He believes that more relevant information about our environment can help us make better informed decisions, enjoy better quality of life, and make our planet a better home. 

The Uses of 3D Modeling Technology in the Environmental Remediation Industry

By: Matt Lyter (Senior Staff Geologist at St-John-Mitterhauser & Associates, A Terracon Company) and Jim Depa (Senior Project Manager/3D Visualization Manager at St-John-Mitterhauser & Associates, A Terracon Company)

Three-dimensional (3D) modeling technology is used by geologists and engineers in the economic and infrastructure industries to help organize and visualize large amounts of data collected from fieldwork investigations. In the oil and gas industry, petroleum geologists use 3D models to visualize complex geologic features in the subsurface in order to find structural traps for oil and natural gas reserves. In the construction industry, engineers use 3D maps and models to help predict the mechanics of the soil and the strength of bedrock for construction projects. Consequently, where construction projects are concerned, it is also advisable to start with design build, so it follows that these predictions can make the eventual construction process easier in the long term. Furthermore, In the mining industry, economic geologists use high resolution 3D models to estimate the value of naturally occurring ore deposits, like gold, copper, and platinum, in a practice known as resource modeling.

All of the models are built in almost the same exact way: 1) By collecting and analyzing soil samples and/or rock cores; 2) Using a computer program to statistically analyze the resulting data to create hundreds or even thousands of new (or inferred) data points; and 3) Visualizing the actual and inferred data to create a detailed picture of the ground or subsurface in three dimensions. These models can be used in the economic and infrastructure industries to help predict the best locations to install an oil or gas well, predict the size of an oil or natural gas reserve, assist in the design of a road, tunnel, or landfill, calculate the amount of overburden material needing to be excavated, or help to predict the economic viability of a subsurface exploration project.

However, because of the significant amount of computing power needed to create the models, usage of the technology by regulatory driven industries has been limited. But continuing technological advancements have recently made 3D modeling technology more accessible and affordable for these regulatory driven industries, including the environmental investigation and remediation industry. Complex 3D models that previously may have taken several days to create using expensive high-end computers, can now be made in several hours (or even minutes) using the technology present in most commercially available desktops. Because of these advancements, subsurface contamination caused by chemical spills can be visualized and modeled in 3D by environmental geologists at a reasonable price and even in near real-time.

3D Models of Soil Contamination

Some of the applications of 3D modeling technology in the environmental investigation and remediation industry are only just beginning to be utilized, but they have already helped to: 1) Identify data gaps from subsurface investigations, 2) Describe and depict the relationship between the geologic setting of a site and underground migration of a contaminant, and 3) Provide a more accurate estimate of the amount of contamination in the subsurface. The models have also helped contractors design more efficient remediation systems, assisted governmental regulators in decision making, and aided the legal industry by explaining complex geologic concepts to the non-scientific community. This is especially true when short animations are created using the models, which can show the data at multiple angles and perspectives – revealing complexities in the subsurface that static two-dimensional images never could.

The consultants at St. John-Mittelhauser and Associates, a Terracon Company (SMA), have used 3D modeling technology on dozens of sites across the United States, most recently, at a large-scale environmental remediation project in the Midwestern United States. Contamination from spills of trichloroethylene (TCE), a once widely used metal degreaser, were identified at a former auto parts manufacturer during a routine Phase 2 investigation. Dozens of soil samples were collected and analyzed in order to define the extent of contamination, and once completed, traditional 2D maps and a series of cross-sections were created. One of the cross sections is shown in the image below:

Cross-section of soil contamination

Traditional Cross-section Showing Geologic Units and Soil Sample Results

The maps and cross sections were presented to remediation contractors with the purpose of designing a remediation system precisely based on treating only the extent of the contaminated soil. The lowest bid received was for $4.2 million dollars (USD), however, it was evident to SMA that all of the proposed designs failed to take into account the complexity of the subsurface contamination. Specifically, large portions of the Site, which were not contaminated, were being proposed to be treated. Therefore, using a 3D dimensional modeling program, SMA visualized the soil sample locations, modeled the extent of the contaminated soil in 3D, and created an animation showing the model at multiple perspectives and angles, at a cost of $12,000 (USD). A screenshot of the model is provided below:

3D dimensional modeling program results

3D Side View of TCE Contamination in Soil (15 PPM in Green, 250 PPM in Orange)?

The project was resubmitted to the remediation contractors with the 3D models and animation included, resulting in a guaranteed fixed-price bid of $3.1 million dollars – a cost savings of over $1.1 million dollars for the client. Additionally, an animation showing both the remedial design plan and confirmatory sampling plan was created and presented to the United States Environmental Protection Agency (the regulatory agency reviewing the project) and was approved without any modifications. To date, the remediation system has removed over 4,200 pounds of TCE from the subsurface and completion of the project is expected in 2019. A short animation of the 3D model can be viewed on YouTube.

3D Models Showing PCE Contamination in Soil

The 3D modeling software has also been used to help determine the most cost-effective solution for other remediation projects, and has been able to identify (and clearly present) the sources of chemical spills.  The following link is an animation showing three case studies involving spills of perchloroethene (a common industrial solvent) at a chemical storage facility, ink manufacturer, and former dry cleaner: https://www.youtube.com/watch?v=0IlN_TIXkGk

The most cost-effective remediation option was different for each site and was based on the magnitude of the contamination, maximum depth of contaminated soil, geologic setting, and the 3D modeled extent of contamination.  Specifically, the contamination at the chemical storage facility was treated using electrical resistance heating technology, chemical oxidants were used to treat the soils at the ink manufacturer, and soil vapor extraction technology was used at the dry cleaner.

However, several barriers remain which prevent the wide-spread use of 3D modeling technology. The various modeling programs can cost upwards of $20,000, as well as yearly fees for software maintenance. There are also costs to organize large datasets, build the necessary files, and create the models and animations. It also must be noted that the 3D models are only statistical predictions of site conditions based on the available data, and the accuracy of the models is wholly dependent on the quantity, and more importantly, the quality of the data. Even so, 3D modeling technology has proven to play an important role in the environmental remediation industry by helping project managers to understand their sites more thoroughly. It has also provided a way to disseminate large amounts information to contractors, regulators, and the general public. But, perhaps, most-importantly, it has saved money for clients.


About the Authors

Matt Lyter (Senior Staff Geologist at St-John-Mitterhauser & Associate, A Terracon Company) provides clients with a wide range of environmental consulting services (Environmental litigation support; acquisition and transaction support; site specific risk assessment, etc.), conventional and state-of-the-art environmental Investigation services, and traditional to advanced environmental remediation services.

Jim Depa (Senior Project Manager/3D Visualization Manager at St-John-Mitterhauser & Associate, A Terracon Company) has over 12 years of experience as a field geologist, project manager, and 3D modeler. He is well-versed with a variety of computer programs including: C-Tech’s Earth Volumetric Studio (EVS), Esri’s ArcGIS, AQTESOLV, MAROS, Power Director 16, and Earthsoft’s EQuIS

Cost of Nuclear Waste Clean-up in the U.S. estimated at $377 Billion

A new report by the United States General Accounting Office (GAO) estimates the total cleanup cost for the radioactive contamination incurred by developing and producing nuclear weapons in the United States at a staggering $377 billion (USD), a number that jumped by more than $100 billion in just one year.

The United States Department of Energy (DoE) Office of Environmental Management (EM) is responsible for cleaning up radioactive and hazardous waste left over from nuclear weapons production and energy research at DoE facilities. The $377 billion estimate largely reflects estimates of future costs to clean up legacy radioactive tank waste and contaminated facilities and soil. 

The U.S. GAO found that EM’s liability will likely continue to grow, in part because the costs of some future work are not yet included in the estimated liability. For example, EM’s liability does not include more than $2.3 billion in costs associated with 45 contaminated facilities that will likely be transferred to EM from other DOE programs in the future.

In 1967 at the height of the U.S.–Soviet nuclear arms race, the U.S. nuclear stockpile totaled 31,255 weapons of all types. Today, that number stands at just 6,550. Although the U.S. has deactivated and destroyed 25,000 nuclear weapons, their legacy is still very much alive.

Nuclear weapons were developed and produced at more than one hundred sites during the Cold War. Cleanup began in 1989, and EM has completed cleanup at 91 of 107 nuclear sites, Still, according to the GAO, “but 16 remain, some of which are the most challenging to address.” 

EM relies primarily on individual sites to locally negotiate cleanup activities and establish priorities. GAO’s analysis of DOE documents identified instances of decisions involving billions of dollars where such an approach did not always balance overall risks and costs. For example, two EM sites had plans to treat similar radioactive tank waste differently, and the costs at one site—Hanford—may be tens of billions more than those at the other site. 

Each of the 16 cleanup sites sets its own priorities, which makes it hard to ensure that the greatest health and environmental risks are addressed first.
This is not consistent with recommendations by GAO and others over the last two decades that EM develop national priorities to balance risks and costs across and within its sites. 

By far the most expensive site to clean up is the Hanford site, which manufactured nuclear material for use in nuclear weapons during the Cold War. In 2017, the DoE estimated site cleanup costs at $141 billion.

Environmental liabilities are high risk because they have been growing for the past 20 years and will likely keep increasing.

EM has not developed a program-wide strategy that determines priority sites. Instead, it continues to prioritize and fund cleanup activities by individual site. Without a strategy that sets national priorities, EM lacks assurance that it is making the most cost-effective cleanup decisions across its sites.

The GAO is made three recommendations to DOE: (1) develop a program-wide strategy that outlines how it will balance risks and costs across sites; (2) submit its mandated annual cleanup report that meets all requirements; and (3) disclose the funding needed to meet all scheduled milestones called for in compliance agreements, either in required annual reports or other supplemental budget materials.