A Call to Keep Workers Safer When Transferring Flammable and Combustible Liquids

Written by Nancy Westcott, President of GoatThroat Pumps

Every day industrial workers transfer potentially hazardous chemicals, such as solvents, acetones, lubricants, cleansers, and acids, from large drums into smaller containers, or into machinery.  Traditionally, such potentially flammable or combustible liquids have been tipped and poured.  Today such spill-prone, VOC emitting methods are no longer considered acceptable, safe, or compliant – not when a fire or explosion can result.

In particular, younger workers, having seen the resulting physical injuries, chronic respiratory ailments, and even deaths endured by parents, grandparents and friends want much safer working conditions.  Consequently, there is now a call for greater safety and regulatory oversight to protect vulnerable workers and their families as simply and efficiently as possible.

“It can be catastrophic to a company if toxic or highly flammable material is accidentally released at the point of use,” says Deborah Grubbe, PE, CEng, is founder of Operations and Safety Solutions, a consulting firm specializing in industrial safety.

“When tipping a heavy drum, it is extremely difficult to pour a liquid chemical and maintain control,” adds Grubbe.  “Companies have to assume that if something can go wrong during chemical transfer, it will, and take appropriate precautions to prevent what could be significant consequences.  Because there is no such thing as a small fire in my business.”

Although the dangers of transferring flammable and combustible liquids are very real, protecting workers from harm can be relatively straightforward.  This includes proper safety training, the use of personal protective equipment (PPE), and the use of engineering controls to prevent dangerous spills.

A Lethal Situation

During a manufacturing process on Nov 20, 2017 at Verla International’s cosmetics factory in New Windsor NY, an employee transferred hexamethyl disiloxane (flash point -6 °C / 21.2 °F) from a drum into another container and then wiped down the chemical drum.  The friction from wiping created static electricity that caused the drum to become engulfed in flames within seconds.  The resulting fire and explosions injured more than 125 people and killed one employee.

A video released by the Orange County Executive’s Office shows the worker wiping down the chemical tank, “causing static which is an ignition event.” “Seconds later, the tank becomes engulfed in flames, with parts of the man’s clothing catching on fire as he runs from the explosion,” according to the Poughkeepsie Journal, a local area newspaper.

Although the man sustained only minor injuries, many at the cosmetics factory were not so lucky.

With the potentially lethal consequences from the use of flammable/combustible liquids in so many industrial facilities, it is essential to understand the hazard.

Flammable and Combustible Liquid Hazards

In a flammable liquids fire, it is the vapors from the liquid that ignite, not the liquid.  Fires and explosions are caused when the perfect combination of fuel and oxygen come in contact with heat or an ignition source.  Based on their flash points, that being the lowest temperature at which liquids can form an ignitable mixture in air, flammable liquids are classified as either combustible or flammable.

Flammable liquids (those liquids with a flash point < 100 deg F) will ignite and burn easily at normal working temperatures where they can easily give off enough vapor to form burnable mixtures with air.  As a result, they can be serious sources of a fire hazard. Flammable liquid fires burn very fast and frequently give off a lot of heat and often clouds of thick, black, toxic smoke.

Combustible liquids (those liquids with a flash point > 100 deg F) do not ignite so easily but if raised to temperatures above their flashpoint, they will also release enough vapor to form burnable mixtures with air. Hot combustible liquids can be as serious a fire hazard as flammable liquids.

Both combustible and flammable liquids can easily be ignited by a flame, hot surface, static electricity, or a spark generated by electricity or mechanical work.  Highly volatile solvents are even more hazardous because any vapor (VOCs) released can reach ignition sources several feet away.  The vapor trail can spread far from the liquid and can settle and collect in low areas like sumps, sewers, pits, trenches and basements.  If ventilation is inadequate and the vapor trail contacts an ignition source, the fire produced can flash back (or travel back) to the liquid. Flashback and fire can happen even if the liquid giving off the vapor and the ignition source are hundreds of feet or even several floors apart.

The most obvious harm would be the danger of a fire or explosion.  “If the vapor is ignited, the fire can quickly reach the bulk liquid. A flammable vapor and air mixture with a specific concentration can explode violently,” according to information on the topic posted online by the Division of Research Safety by the University of Illinois at Urbana-Champaign.

Consequently, minimizing the dangers of handling flammable and combustible liquid chemicals requires proper training and equipment.

Safe Handling

Without proper ventilation, the handling of flammable substances has a good chance to create an explosive atmosphere.  It is essential to work only in well-ventilated areas or have a local ventilation system that can sufficiently remove any flammable vapors to prevent an explosion risk.

Because two of the three primary elements for a fire or explosion usually exist in the atmosphere inside a vessel containing a flammable liquid (fuel and an oxidant, usually oxygen), it is also critical to eliminate external ignition sources when handling such liquids.  Sources of ignition can include static discharge, open flames, frictional heat, radiant heat, lightning, smoking, cutting, welding, and electrical/mechanical sparks.

Static Electricity Grounding

When transferring flammable liquids from large containers (>4 L), to a smaller container, the flow of the liquid can create static electricity which could result in a spark. Static electricity build-up is possible whether using a pump or simply pouring the liquid.  If the bulk container and receiving vessel are both metal, it is important to bond the two by firmly attaching a metal bonding strap or wire to both containers as well as to ground, which can help to safely direct the static charge to ground.

When transferring Class 1, 2, or 3 flammable liquids with a flashpoint below 100°F (37.8°C), OSHA mandates that the containers must be grounded or bonded to prevent electrostatic discharge that could act as an ignition source. NFPA 30 Section 18.4.2.2 also requires a means to prevent static electricity during transfer/dispensing operations.

Engineering Controls

Beyond PPE and proper ventilation, it is absolutely critical for workers to use regulatory compliant, engineered controls to safely transfer flammable and combustible liquids at the jobsite.  Most states and municipalities across the U.S. have adopted NFPA® 30 Flammable and Combustible Liquids Code and OSHA 29 CFR 1910.106, which address the handling, storage, and use of flammable liquids.  With NFPA 30, material is classified as a Class 1 liquid (flammable) and Class 2 and 3 (combustible).

The codes account for safeguards to eliminate spills and leakage of Class 1, 2, and 3 liquids in the workplace. This begins with requirements surrounding the integrity of the container, but also extends to the pumps used to safely dispense flammable and combustible liquids.

Point of Use Containment

According to Gary Marcus of Justrite Manufacturing in an article posted on EHS Today’s web site, “Drums stored vertically are fitted with pumps instead of faucets for dispensing. Use of a pump is generally considered safer and more accurate. Some local codes require pumps for all drums containing flammable liquids.

A fast-growing approach to flammable liquids storage is to keep as much liquid as possible close to the point of use because it is efficient and saves time. Workers can minimize their exposure to potential ignition sources if they replenish their solvent supply from a drum near their workstations, rather than from the solvent room a quarter-mile away. OSHA permits up to 60 gallons of Class I or Class II liquids and up to 120 gallons of Class III liquids to be stored in safety cabinets close to workstations.”

In most workplaces, supervisors and facility managers have been recommending rotary and hand suction pumps to transfer flammable liquids for decades. However, they are increasingly turning to sealed pump systems designed for class 1 and 2 flammable liquids, which are a more effective engineering control tool for protecting employees and operations.

Conventional piston and rotary hand pumps have some inherent vulnerabilities.  These pumps are open systems that require one of the bungs holes to be open to the outside atmosphere. The pumps dispense liquids from the containers using suction, so it requires that a bung be open to allow air to enter the containers to replace the liquid removed.  Without this opening, either the container will collapse or the liquid will stop coming out.

Typically, there is also a small gap between the container opening (bung) and the pump dip tube that allows air to enter.  This opening also allows some vapor release into the atmosphere when the pumps are unused and connected to the container.  The gaps may allow an explosion to occur at a temperature near the flashpoint.  This can cause a high-velocity flame jet to vent near the bung, which could injure personnel near the container.

In addition, using the piston and rotary pumps to remove liquid from containers can allow some spillage since there is no flow control device. If a seal fails, liquid can also be sprayed from the pump and onto the user and the floor.

As a solution, the industry has developed sealed pump dispensing systems that enhances safety by eliminating spills and enables spill-free, environmentally safe transfer that prevent vapors from escaping the container.

These systems are made of groundable plastic and come complete with bonding and grounding wires. The spring actuation tap handle can be immediately closed to stop liquid flowing preventing any spills. The design of this sealed pump system also prevents liquid vapors from exiting the container when the pump is unused.   These characteristics significantly reduce the chance of an ignition event.   The combination of all these features ensure the pump meets both NFPA30-2015.18.4.4 standards and NFPA 77.

Now that the hazards of transferring flammable and combustible liquids are clearly recognized, proactive industrial facilities are beginning to protect their workers and their families by implementing safety training, PPE use, and sealed, grounded pumps.  This will help their operations stay compliant, mitigate insurance risks while minimizing the risk of fire and explosion due to spills, vapors, and static shock.


About the Author

Nancy Westcott is the President of GoatThroat Pumps, a Milford, Conn.- based manufacturer of industrial safety pumps and engineered chemical transfer solutions that keep companies in regulatory compliance.

Challenges to Environmental Investigations and Cleanups During the COVID-19 Crisis

Written by John McGahren, Stephanie R. Feingold, Ariel Kapoano, and Jenna Ferraro, Morgan, Lewis & Bockius LLP

Business closures and remote work requirements, work stoppages, travel restrictions, state and federal government slowdowns, and supply-chain disruptions are impacting parties’ abilities to satisfy obligations pursuant to environmental settlements, including administrative consent orders or judicial consent decrees with the US Environmental Protection Agency (EPA), and administrative orders with various state environmental agencies as well as compliance obligations under federal environmental laws such as the Clean Air Act, Clean Water Act, and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).

State Guidance

Although the CDC has released guidelines recommending work from home and social distancing, there are currently no federal mandates or executive orders requiring business shutdowns or mandatory quarantine. Instead, many states, counties, and municipalities are releasing executive orders as well as nonbinding policies ranging from shelter-in-place to closing nonessential businesses and limiting gatherings of people.

These state and local mandates uniformly exempt “essential businesses” from such directives. The “essential business” exemption includes services and sectors that promote public safety, health, and welfare, although exactly what constitutes an “essential business” can vary. For example:

New York: Executive Order 202.6 exempts “essential businesses” to include healthcare operations (including research and laboratory services); essential infrastructure (including utilities); telecommunication; airports and transportation infrastructure; essential manufacturing (including food processing and pharmaceuticals); essential retail (including grocery stores and pharmacies); essential services (including trash collection, mail, and shipping services; news media; banks and related financial institutions); providers of basic necessities to economically disadvantaged populations; construction; vendors of essential services to maintain the safety, sanitation and essential operations of residences or other essential businesses; and vendors that provide essential services or products (including logistics and technology support, child care, and services needed to ensure the continuing operation of government agencies and provide for the health, safety, and welfare of the public).

New Jersey: Executive Order No. 104 exempts “essential businesses,” defined to include “grocery/food stores, pharmacies, medical supply stores, gas stations, healthcare facilities and ancillary stores within healthcare facilities.” All gatherings within the state are limited to 50 persons or fewer, except for “normal operations at airports, bus and train stations, medical facilities, office environments, factories, assemblages for the purpose of industrial or manufacturing work, construction sites, mass transit, or the purchase of groceries or consumer goods.”

It is less clear, however, whether environmental cleanups and investigations would constitute “essential businesses” subject to these exemptions. Furthermore, some states have expanded their initial executive orders, and others may follow suit. For example, while Pennsylvania initially recommended the closure of nonessential businesses, on March 19 Governor Tom Wolf signed an executive order forcing the closure of all but “life-sustaining” businesses. The state will begin enforcement actions against noncompliant businesses on March 21 under the terms of this order. Construction activities, for example, are no longer permitted to operate in Pennsylvania.  Additionally, on March 19, Governor Gavin Newsom of California signed an executive order requiring all residents to stay home, except as needed to maintain continuity of operations of the 16 “federal critical infrastructure sectors” including critical manufacturing, chemical, emergency services, energy, healthcare and public health, financial services, food and agriculture, and water and wastewater. And on March 20, just one day after having directed 75% of all nonessential employees to stay home, New York Governor Andrew Cuomo announced that he would be putting out an executive order mandating that 100% of employees in “nonessential” businesses in the state stay home.

Many state environmental agencies have not yet released guidance on the impacts of COVID-19. Moreover, even if environmental cleanups are permitted to proceed, maintaining the recommended “social distancing” in site investigation or remediation activities presents a challenge. Further challenges to ongoing site investigations and cleanups may also arise due to workforce absenteeism due to illness or caring for an ill family member.

EPA Guidance

EPA has not yet released guidance on the impact to agency operations due to COVID-19. Moreover, each site is differently situated, so there may be no one-size-fits-all solution. Parties currently remediating sites pursuant to settlements with EPA should carefully scrutinize their respective agreements and orders, including the force majeure clauses, to determine whether current circumstances may constitute such an event, and how and when to notify the agency. Most such provisions require notification within days, or even hours, of the discovery of the force majeure event, prompting yet more uncertainty as to whether there has been a trigger based on the novel pandemic response gripping the nation.

For example, EPA’s Model Consent Decree Language and Model Administrative Consent Order Language both define force majeure events as any event arising from “causes beyond the control” of respondents that “delays or prevents the performance of any obligation” under the order despite respondents’ “best efforts to fulfill the obligation.”

Each ongoing cleanup faces unique challenges depending on locality and nature of the cleanup. Responsible parties should consider outreach to EPA requesting the following actions:

  • Recognize the rapidly changing circumstances at the local, state, and federal level caused by COVID-19
  • Temporarily suspend notice deadlines for force majeure events caused by the COVID-19 crisis, as well as waive penalties for failure to timely notice or meet a deadline where the implications of COVID-19 have made it impracticable or impossible
  • Work with responsible parties on an individualized basis to determine whether ongoing work can continue and the extent to which deadlines should be extended, and follow a dispute process in the event of disagreement
  • Acknowledge that there may not be a one-size-fits-all approach for sites that are at different stages of remedial progress and subject to varying state restrictions

Until state and federal environmental authorities take affirmative action, responsible parties should consider proactive outreach to their EPA and state agency contacts for their specific cleanup sites for further guidance in this unprecedented situation, and stay tuned for further announcements on the status of environmental cleanups in the midst of the COVID-19 pandemic.

Copyright 2020.  Morgan, Lewis & Bockius LLP.  All Rights Reserved. 

 This article is provided as a general informational service and it should not be construed as imparting legal advice on any specific matter.


About the Authors

John McGahren is the Princeton litigation practice leader and deputy chair of the firm’s global environmental practice. John counsels clients on litigation, enforcement, and transactional matters. He prosecutes and defends citizen suits, Superfund and RCRA disputes, Clean Water and Air Act litigation, state law actions, and natural resource damage claims.

Stephanie R. Feingold represents clients in litigation and dispute resolution and provides environmental and regulatory counseling. Her work spans investigations, cost recovery and contribution actions, and enforcement actions brought by and against environmental agencies and government authorities, as well as private party actions.

Ariel Kapoano represents clients in complex environmental, toxic tort, contract, and consumer fraud litigation matters. She has experience in all aspects of litigation including factual investigation, discovery management, motions practice, and trial.

Jenna C. Ferraro is a part of the firm’s litigation team, which counsels clients and provides legal services in a wide range of areas, including general civil and commercial litigation, environmental law and toxic torts. Jenna’s experience includes many aspects of litigation, including discovery matters and motion practice.

How Virtual Reality and real-world tech can aid CBRNe training

Written by Steven Pike, Argon Electronics

Hands-on training in realistic environments is a cornerstone of CBRNe disaster preparedness, whether for the purpose of military exercises, first response or civilian operations.

The quality, frequency and consistency of CBRNe training has a substantial part to play in how easily personnel are able to acquire both the theory and the practice – and in how effectively they are able to continue to apply that knowledge in the long-term.

The impact and the authenticity of CBRNe training relies on three fundamental principles.

First is the importance of providing trainees with the opportunity to use actual equipment.

Second is enabling those personnel to apply their understanding of this equipment through exposure to realistic scenarios.

And thirdly is ensuring that the scenarios that are provided are conducted in relevant environments or locations.

Time restrictions, cost implications and safety considerations however, can all too often limit the opportunities for responders to practice, test and hone their crucial skills.

Training for radiation incidents

When an incident involves the presence of a high-radiation source or radioactive contamination, it can present some additional challenges.

At the same time, the equipment that radiological responders are required to use is also becoming increasingly sophisticated – and in particular when it comes to effective search and radionuclide identification (spectrometry.)

Many traditional radiation safety training methods can struggle to credibly recreate the complexities of real-life radiological events.

Field exercises can offer the promise of a high fidelity training experience, but sometimes fall short due to the minimal quantity of radiation source that can be safely used.

In the process, an understanding of essential physics can all too easily be diluted, misinterpreted or omitted altogether.

To ensure best preparedness, it is vital that emergency responders are provided with the opportunity to train against robust scenarios that take place in their home locations, that utilise their actual operating equipment and that enable them to put their protocols to the test.

Is virtual reality immersion the key?

Over the couple of decades there has been an increased interest in the potential applications of virtual reality (VR) and augmented reality (AR) in the enhancement of CBRN disaster preparedness.

In contrast to traditional user desktop interfaces, such as viewing a scenario on a computer screen, VR harnesses the power of computer technology to create a simulated environment that aims to recreate as many of the senses as possible.

Virtual reality enables the user to be placed directly “inside” the training experience, and once they are immersed in this artificial world, to be able to interact with a hyper realistic 3D environment.

Immersive multi-user VR training systems can be used to enhance situational awareness, to aid in the operation of equipment or to improve reaction times.

Some systems are designed to provide a pre-defined scenario (or scenarios) in order to train multiple users – for example when a large number of simulators are used in order to train military personnel for specific land, air or naval operations. Others allow the creation of self-defined scenarios that can be applied in multi-user training exercises.

Whilst VR creates an artificial environment in which the user can “inhabit”, augmented reality can be used to enhance live exercises in a real environment by superimposing computer-generated images over the user’s view of the real world.

But while virtual reality or augmented reality immersion exercises can offer many advantages, it is still extremely difficult to replicate the logistical, physiological and sensory realities of a taking part in a live incident.

In many cases too, virtual reality training must be restricted to specialised facilities. And perhaps most crucially, trainees miss the opportunity to practice with the actual detector equipment that they will be required to use in real incidents.

Maintaining operational readiness is vital, however it can often be difficult to provide personnel with access to the hands-on radiological training that they need.

Emergency training requires the mastery of a variety of skills and abilities – but placing trainees in real emergency situations, especially during the initial stages of training, is something that is best avoided.

What is of greater benefit is being able to provide personnel with expert guidance that takes place in a setting that mimics, as closely as possible, the challenges of real-life events.

What is required is a paradigm shift in the approach to radiological preparedness training.

If, for example, the potential applications of virtual technology can be merged with the hands-on application of real-world capabilities, then the possibilities could well be limitless.

With this goal in mind, Argon Electronics is excited to have joined forces with the Lawrence Livermore National Laboratory (LLNL) to explore the potential of the LLNL’s Radiation Field Training Simulator (RaFTS).


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

The Five Things you need to know about Incident Management and Reporting

Intelex, a company specializing in the development of EHS and quality software, recently published an insight report entitled “The Five Things you Need to Know about Incident Management and Reporting“.  The report provides information on the legal obligations to report serious injuries and fatalities, best practices for incident reporting and management, and how incident reporting and management can be linked to operational excellence.

In the introduction of the report, the cause of the Titanic disaster is discussed.  It report states that the average person would cite an iceberg as the cause of the ship’s sinking.  In contrast, a risk or safety manager would respond that the tragedy was caused by a series of events – management failures, poor-quality construction, employee errors/lack of training, poor planning, and either the failure to track incidents or the inability to analyze incident data in a meaningful way – that ended with the sinking of the ship.

EHS incidents can be painful for injured employees, the environment, and an organization’s bottom line, but incident management and reporting doesn’t have to be a pain point if done correctly.

Manitoba Government releases independent risk analysis report of lead in soil

In response to residents expressing concerns about lead in soil found in ten Winnipeg neighbourhoods, the province released a report prepared by an independent third party.  The 323-page report, prepared by Intrinsik Corp., reconfirms that there is a low heath risk for Manitobans when it comes to lead in soil.

Manitoba Health Seniors and Active Living (MHSAL) and Manitoba Conservation and Climate (MCC) commissioned a third-party review to determine if there are any potential risks to human health, and how best to identify and manage areas with elevated lead concentrations in soil.

The report was presented to government in December 2019, and the province has moved quickly to review its findings and prioritize the recommendations.

As recommended, the province will work towards making blood lead levels in excess of established guidelines reportable under The Public Health Act.  This move will assist the province to track and better understand where lead exposure may continue to pose a problem.  This new information will help focus future public health and environmental efforts where they are needed and will have the greatest impact.

MHSAL and MCC will also move forward with the recommendation to develop a communications and outreach plan that delivers a single, clear and effective message to the public and key stakeholders about how to mitigate potential risks.  This could include a public webpage or social media platform with regular updates for information sharing, and training for parents and caregivers of young children, as well as child care centres, community centres and preschools.

MHSAL and MCC will continue to work with Manitoba Education and school divisions to develop a plan to address recommendations for Weston School.

Given the primary source of lead emissions in Winnipeg are no longer present, the health risk of lead for Manitobans is low.  The report stressed that soil remediation was not recommended as a course of action.

To view the independent report’s findings and recommendations, visit

Lead Contamination of Soil in Winnipeg kept secret

As reported by the CBC in 2018, testing performed on soil in several other Winnipeg neighbourhoods more than 10 years ago showed potentially dangerous levels of lead — but residents were never told about the results because the government at the time withheld the information, according to documents obtained by CBC News.

Documents obtained by CBC through government sources reveal an extensive round of soil testing was conducted by the provincial government in 2007 and 2008 around Point Douglas, Wolseley, Minto and South Osborne.  Residential boulevards were targeted, as were playgrounds, schools and sports fields.

How new technology is improving first responder safety

Written by Steve Pike, Argon Electronics

When the pressure is on to make quick decisions in emergency response situations, the value of practical personal experience is something that can never be underestimated.

But while the “human factor” remains an inestimable force, it is also essential that first responders have access to the appropriate technological support to enable them to work safely and effectively in the field.

In the US, the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) works in close collaboration with the nation’s emergency response community.

Their recent projects have included the development of body-worn cameras that activate without responder manipulation, thermal sensors for firefighters that provide early detection of infrared radiation (IR), and wearable smart chemical sensors that warn responders of toxic exposure.

The International Forum to Advance First Responder Innovation (IFAFRI) brings together global industry and academia to identify common capability gaps within first response – in particular the ability to rapidly identify hazardous agents, and to detect, monitor and analyse hazards in real time.

More recently, an exciting array of new technologies have been put to use within the emergency services sector – including an eCall vehicle alarm system that delivers automated messages to emergency services following an accident, the deployment of drones for search and rescue, and the development of artificial intelligence (AI) solutions for firefighters.

Advancements in radiation safety training

New innovations in simulator detector technology for radiation safety training are also playing an important role in supporting first response personnel.

Unlike other forms of hazardous materials where the threat may be clearly evident, ionising radiation is a formidable and invisible force.

So it is even more vital that first responders are equipped with the correct tools, that they are skilled in interpreting the readings they obtain and that they are confident to act on that information.

Enhanced simulator training systems

Incorporating the use of simulator detector equipment in radiation training exercises offers an opportunity to significantly enhance the quality of a trainee’s learning experience.

The effectiveness of the training, however, will depend on a number of key factors.

Firstly there is the realism of the simulator’s user interface components (the visual display, indicators, switch panel, vibrator, sounder etc) which should be designed to match as closely as possible the look, feel and functionality of the actual device.

As trainees approach or move away from the simulation source, the response speed and characteristics of the simulation will also be important in providing an accurate depiction of the behaviour of the actual detector.

Also key, is the extent to which trainees are able to experience the practical applications of inverse square law, time, distance and shielding. Different shielding effects will need to be realistically represented, for example, as will the effects of user body shielding for source location.

The consistency and repeatability of the simulation will be vital in ensuring that trainees are able to repeat the same scenario, in the same location, and receive the same result – and that the readings obtained on different types of simulator are within the accepted tolerances of the actual detectors.

From the trainer’s perspective, the whole life cost of ownership of the device will undoubtedly be an important consideration.

It may be important, for example, that the simulator uses only the same batteries as the original detector, that it requires no regular calibration and that there is no need for costly and time-consuming preventative maintenance.

The development of innovative simulator detector technologies, such as Argon’s RadEye SIM, offers the opportunity for first responders to enhance the timeliness, precision and effectiveness of their response to radiological emergencies.

For radiation safety instructors there is also the benefit of being able to create highly realistic and compelling radiation training exercises that are free from regulatory, environmental and health and safety concerns.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

8 Dangerous Goods myths and misconceptions—busted!

Contributed by LabelMaster

Remember Mythbusters? A couple of former Hollywood effects pros created one of the top shows on cable TV by debunking popular myths and misconceptions. They proved—over and over—that just because “everyone knows” something doesn’t make it true.

If there were a supply chain TV network, Dangerous Goods professionals could probably run their own version of Mythbusters. We hear myths and misconceptions all the time!

Labelmaster consultants Jay JohnsonAlicia Saenz and Jim Shimko helped compile this list of hazmat shipping myths, along with the facts and regulatory knowledge that busts them.

  1. As long as the box is UN rated and/or marked you can put anything in it. Um, no. UN-certified packaging is highly specialized, with packagings designed specifically for lithium batteries, air bags, chemicals and other materials.
  2. If you’re only shipping Limited Quantities by ground, you don’t need any training. Please don’t fall for this one! Anyone who handles hazmat—any kind of hazmat—is required to have up-to-date training, and if your teams’ training is out of date there’s a very good chance you’ll be fined. Heck, we even offer training specifically for shipping Limited and Excepted Quantities.
  3. Packages marked Limited Quantity or ORM-D shipping via ground are “not really regulated.” Yes, it’s true that the Limited Quantity, Excepted Quantity and ORM-D designations were created to be less burdensome than Fully Regulated shipments, but there are still lots of regulations that do apply to such shipments. (By the way, the ORM-D designation is being phased out by the end of 2020. Stay tuned.)
  4. Regulatory agencies are in cahoots with manufacturers to sell more labels and packaging. Sure, that’s why ICAO has three days of 12-hour meetings every year! Contrary to this conspiracy theory, the truth is we’re not crazy about rules changes, either—but we recognize that each change represents hundreds of hours of work by incredibly dedicated professionals who only want to make the supply chain safer.
  5. “They shipped it to me that way so it must be compliant, and I can just ship it again.” Yikes. 71% of hazmat pros surveyed in our most recent Global DG Confidence Outlook say their supply chain partners are not as compliant as they are. In Dangerous Goods transport, you can never assume anything—please check the regulations for everything you ship.
  6. You can ship anything in 4GV packaging. Maybe, but why would you? As Johnson explains, “Don’t make the exception the rule! You might be able to use 4G packages for the 99% of your shipments and use more expensive  4GV packagings for the 1% odd primaries.”
  7. Button cell lithium batteries aren’t really regulated. People who say this may mean button cells aren’t Fully Regulated, but there’s no such thing as “not really regulated.” Please don’t make the mistake of believing that any kind of lithium batteries can be shipped without regard to relevant lithium battery regulations.
  8. If you light a match in a porta potty, it will explode. Oops, sorry, that’s actually Mythbusters episode. But in case you were wondering … you’d need to be in a tightly sealed porta-potty filled with thick methane gas for it to be flammable, so you can light up without fear.

Remember—just because “everyone knows” something doesn’t make it true! If you ever have any questions about how to compliantly package, label, placard or document a Dangerous Goods shipment, call Labelmaster at 800.621.5808 to separate the facts from the myths.

Make sure your shipments are safe and in complete compliance with a full line of solutions from Labelmaster—a full-service provider of goods and services for hazardous materials and Dangerous Goods professionals, shippers, transport operators and EH&S providers.

Ontario: Asphalt Company Fined $175,000 for Environmental Violations

Ingram Asphalt Inc., located in Toronto, was recently convicted of five violations under the Ontario Environmental Protection Act and was fined $175,000 plus a victim surcharge of $43,750.  The company was given 24 months to pay the fine.

The convictions relate to permitting the discharge of Benzo(a)Pyrene, a contaminant that exceeded established standards, and for violating three ministry approval conditions, and for alteration of equipment without ministry approval.

Ingram Asphalt Inc. produces asphalt road pavement at a facility located on Ingram Drive in Toronto, within an industrial area shared with various businesses, and a commercial building with residential space.  Over the years there have been complaints regarding concerns about dust leaving the site and adversely impacting businesses and quality of life.

Breakdown on Fines

With respect to the prosecution on the discharge of Benzo(a)Pyrene into the air, the company was fined $100,000 for permitting the discharge for a specified averaging period and exceeding the acceptable levels under Section 20 (2) of Ontario Regulation 419/05 under the Environmental Protection Act, on December 11, 2017. The ministry was notified of the exceedance with reported levels in the air of 0.0000297 micrograms per cubic meter, compared to the allowable limits specified as 0.00001 micrograms per cubic meter, almost three times the allowed maximum.

Ingram Asphalt was fined $55,000 for three violations for non-compliance with a ministry approval for conditions outlined in the company’s December 2016 approval conditions specific to addressing concerns about air pollution. Despite efforts by the ministry to bring the company into compliance it was identified that the company was non-compliant in the following areas: (1) Condition No. 1 (5) restricts the height of storage piles to be less than the height of the associated barrier walls; (2) Condition No. 10 requires the installation of an opacity monitor in accordance with the requirements; and (3) Schedule “D” requires the company to submit a Source Testing Report in accordance with the requirements.

The company was fined $20,000 on one violation for altering the approved equipment by failing to connect pipe and duct work from the asphalt tanks to the batch dryer, which is part of the air pollution control equipment.

Benzo(a)Pyrene

 

Benzo(a)pyrene and other polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants formed during incomplete combustion or pyrolysis of organic material. These substances are found in air, water, soils and sediments, generally at trace levels except near their sources. PAHs are present in some foods and in a few pharmaceutical products based on coal tar that are applied to the skin. Tobacco smoke contains high concentrations of PAHs.

Major sources of PAHs in ambient air (both outdoors and indoors) include residential and commercial heating with wood, coal or other biomasses (oil and gas heating produce much lower quantities of PAH), other indoor sources such as cooking and tobacco smoke, and outdoor sources like motor-vehicle exhaust (especially from diesel engines), industrial emissions and forest fires.

 

U.S. OSHA Reveals Preliminary List of Top Ten Violations for 2019

Written by , GLE Associates, Inc.

Annually, around 5,000 workers die and millions are injured on the job in the United States. Many of these deaths and injuries are preventable, caused by United States Occupational Safety and Health Agency (U.S. OSHA) violations.

In September, U.S. OSHA revealed preliminary data about the top ten violations they’ve cited in 2019. The list is largely unchanged from 2018, with two violations trading ranks in the list (respiratory protection took the place of control of hazardous energy-lockout/tagout).

The data reveal the largest areas of concern for worker safety and opportunities for employers to improve.

Top Ten Violations

Rank Standard Number of Citations
1 Fall Protection – General Requirements (1926.501) 6,010
2 Hazard Communication (1910.1200) 3,671
3 Scaffolding (1926.451) 2,813
4 Control of Hazardous Energy – Lockout/Tagout (1910.147) 2,606
5 Respiratory Protection (1910.134) 2,450
6 Ladders (1926.1053) 2,345
7 Powered Industrial Trucks (1910.178) 2,093
8 Fall Protection – Training Requirements (1926.503) 1,773
9 Machine Guarding (1910.212) 1,743
10 Personal Protective Equipment – Lifesaving Equipment and Eye and Face Protection (1926.102) 1,411

U.S. DOT Proposing Changes to Hazardous Materials Regulations

The U.S. Department of Transportation (DOT) is proposing a change to the Hazardous Materials Regulations to allow the transportation of liquefied natural gas (LNG) on railcars. The overture builds on an executive order by President Donald Trump issued earlier this year.

Currently, LNG can only be transported by rail using a portable tank with prior approval from the Federal Railroad Administration (FRA), although the Hazardous Materials Regulations allow DOT 113 specification tank cars to be used for hauling other flammable liquids. Under a notice of proposed rule- making, DOT’s Pipeline and Hazardous Materials Safety Administration (PHMSA) now seeks comment on changes that would allow LNG to be transported in these cars as well.

Citing LNG’s expanding role as a critical domestic and international energy resource, PHMSA proposes to permit the transport of LNG by rail tank car to meet the demand for greater flexibility in the modes of transportation available to transport LNG. The proposed rule would facilitate harmonization across the North American rail network. In Canada, LNG is already authorized for transport in DOT-113 equivalent specification rail tank cars (TC-113C120W).

“Safety is the number one priority of PHMSA and we understand the importance and will make it a top priority to evaluate all public comments and concerns raised throughout the rule-making process,” said PHMSA administrator Skip Elliott. “This major rule will establish a safe, reliable, and durable mode of transportation for LNG while substantially increasing economic benefits and our nation’s energy competitiveness in the global market.”

“FRA shares regulatory oversight responsibility for the safe transportation of hazardous materials by rail,” said Ronald Batory, Federal Railroad Administration administrator. “This rule-making is consistent with our systemic approach to accident prevention, mitigation, and emergency response preparedness.”

Packaging requirements

In the NPRM, PHMSA proposes the following packaging controls:

  • Authorized transport of LNG by rail in DOT-113C120W tank cars. DOT-113 tank cars are vacuum-insulated and consist of an inner stainless steel tank enclosed with an outer carbon steel jacket shell specifically designed for the transportation of refrigerated liquefied gases.
  • Amend the Pressure Control Valve Setting or Relief Valve Setting Table in 49 Code of Federal Regulations § 173.319(d)(2) by adding a column for methane, thus identifying the pressure relief valve requirements for DOT-113s transporting methane.

Operational controls

PHMSA is not proposing new operational controls for transport of LNG by rail tank car. However, PHMSA notes the operational controls (e.g., speed restrictions) set forth in the Association of American Railroads (AAR) Circular OT-55 would apply to the bulk transport of LNG by rail in a train composed of 20 car loads or intermodal portable tank loads in which LNG is present along with any combination of other hazardous materials. OT-55 is a detailed protocol establishing railroad operating practices for the transport of hazardous materials that has been voluntarily adopted by the industry.

Safety case for LNG-by-rail

DOT-113 specification tank cars, including DOT-113C120W tank cars, include a stainless steel inner vessel and a thick steel outer vessel (or jacket); there is an insulated vacuum space between the two vessels to minimize the rate of heat transfer from the atmosphere to the refrigerated liquid during transport; and the cars include pressure relief devices, vents, and valves to prevent or minimize overpressure releases.

Additional requests for information

In addition to commenting on the specific packaging requirements listed above, the NPRM asks the public to comment on the following topics that are within the scope of the NPRM:

  • Whether the authorized transport of LNG by rail has the potential to reduce regulatory burdens, enhance domestic energy production, and impact safety.
  • Whether there is a reasonable basis for limiting the length of a train transporting LNG tank cars and what length is appropriate.
  • Whether there is a reasonable basis for limiting the train configuration, such as by limiting the number of LNG tank cars in a train consist or by restricting where LNG tank cars may be placed within the train.
  • Whether PHMSA should consider any additional operational controls and whether such controls are justified by data on the safety or economic impacts.

Comments on the LNG-by-rail NPRM are due on or before December 23, 2019.