Business Opportunities for Environmental Research and Development

The United States Department of Defense’s Strategic Environmental Research and Development Program (SERDP) is seeking environmental research and development proposals for funding beginning in FY 2020. Projects will be selected through a competitive process. The Core Solicitation provides funding opportunities for basic and applied research and advanced technology development. Core projects vary in cost and duration consistent with the scope of the work proposed.

The Statements of Need (SON) referenced by this solicitation request proposals related to the SERDP program areas of Environmental Restoration (ER), Munitions Response (MR), Resource Conservation and Resiliency (RC), and Weapons Systems and Platforms (WP).

The SERDP Exploratory Development (SEED) Solicitation provides funding opportunities for work that will investigate innovative environmental approaches that entail high technical risk or require supporting data to provide proof of concept.

Funding is limited to not more than $200,000 and projects are approximately one year in duration. This year, SERDP is requesting SEED proposals for the Munitions Response and Weapons Systems and Platforms program areas. All Core pre-proposals are due January 8, 2019. SEED proposals are due March 5, 2019. For more information and application instructions, see https://www.serdp-estcp.org/Funding-Opportunities/SERDP-Solicitations.

When Oil and Water Mix: Understanding the Environmental Impacts of Fracking

Dan Soeder, director of the Energy Resources Initiative at the South Dakota School of Mines & Technology, has co-authored the cover article titled “When oil and water mix: Understanding the environmental impacts of shale development,” in the recent issue of GSA Today, a magazine published by the Geological Society of America.

The article explores what is known and not known about the environmental risks of fracking with the intent of fostering informed discussions within the geoscience community on the topic of hydraulic fracturing, says Soeder. Soeder’s co-author is Douglas B. Kent of the United States Geological Survey.

In this paper, Soeder and Kent bridge the gap in consensus regarding fracking, providing current information about the environmental impacts of shale development. The article is open access and adheres to science and policy, presenting a complicated and controversial topic in a manner more easily understood by the lay person.

“Geoscientists from dinosaur experts to the people studying the surface of Mars are often asked by the public to weigh-in with their opinions on fracking. We wanted the broader geoscience community to be aware of what is known and not known about the impacts of this technology on air, water, ecosystems and human health. A great deal has been learned in the past decade, but there are still critical unknowns where we don’t yet have answers,” Soeder says.

The development of shale gas and tight oil, or unconventional oil and gas (UOG), has dramatically increased domestic energy production in the United States and Canada. UOG resources are typically developed through the use of hydraulic fracturing, which creates high-permeability flow paths into large volumes of tight rocks to provide a means for hydrocarbons to move to a wellbore. This process can be done by using volumes of water, sand, and chemicals, however, there are other strategies from leading companies like NCS Multistage, for example, that could be used.

In the article, Soeder and Kent address the various potential impacts of fracking and how those impacts are being addressed. Risks to air include releases of methane, carbon dioxide, volatile organic compounds, and particulate matter. Water-resource risks include excessive withdrawals, stray gas in drinking-water aquifers, and surface spills of fluids or chemicals. Landscapes can be significantly altered by the infrastructure installed to support large drilling platforms and associated equipment. Exposure routes, fate and transport, and toxicology of chemicals used in the hydraulic fracturing process are poorly understood.

Schematic diagram illustrating unconventional oil and gas (UOG) development activities relevant to research on human-health and environmental impacts (not to scale): well-pad construction (1); drilling (2); completion/stimulation (3, 4); production of natural gas (5) and oil (6) with well casings designed to protect drinking-water aquifers; ultimate closure (plug and abandon), illustrating legacy well with leaking casing (7); wastewater disposal (8); induced seismicity (9); landscape disturbance (10); and potential for transport pathways from deep to shallow formations (11). Also represented are water supply wells in shallow and deep aquifers (12). Photographs by Dan Soeder.

 

Did the City of Hamilton overpay for a Brownfield Site

As reported by the CBC, the City of Hamilton recently paid $1.75 million for a brownfield site that once sold for $2.  The property, located at 350 Wenworth Street North, sold for $2 a decade ago and then for $266,000 two years ago.

In the property was purchased in 2013 for $266,000, hundreds of barrels of toxic waste were discovered behind a fake wall.  The barrels contained coal tar byproducts and industrial solvents, and roof tar.  The new owner arranged for the proper disposal of the barrels.  The Ontario Environment Ministry confirmed  in  an e-mail to CBC that the waste had been from the building and it was decontaminated by the fall of 2017.  It also confirmed that the clean-up included the removal of approximately 200,000 litres of liquid waste.

The cleanup of the toxic property has been going on intermittently since 2010 (Photo Credit: Hamilton Spectator) photo

It is not known how much the clean-up of the 800 barrels of toxic waste cost, but the Hamilton Spectator quoted the owner  in 2017 that the clean-up would cost $650,000.

Property records for the building stretch all the way back to 1988, when Currie Products Limited spent a million dollars for 350 Wentworth. Currie ran a tar facility that went out of business there in the late 1990s, and was considered by many to be the company that originally polluted the site. Owner John Currie died in 2013.

Through the years, the building has changed hands multiple times for a wide swath of prices, ranging from that original million dollars, to $610,000 in 2007, to $2 in 2008, to the tax sale in 2016 and now, for $1.75 million. Over that time, building owners fought with each other and the province over who was actually responsible for cleaning up the site, in some cases heading to court in search of a resolution. For each sale, the price of the property reflected what buyers knew about the site at the time.

The city’s purchase of the property is all part of a reshuffling of buildings in the area to create a transit hub for the lower city like the Mountain Transit Centre at 2200 Upper James.

While it appears the city could have saved money by taking over the property when it was up for tax sale, that’s not really the case, officials say. The city does sometimes take carriage of properties after a failed tax sale, but woudn’t do so on a property like this one with environmental issues, Hamilton City Councillor Matthew Green told the CBC.  He added, “The city won’t take on the liability by policy.  The liability is way too big, because you don’t know what you’re buying … you have no idea what could be found or buried.”

The city bought 350 Wentworth St. N., which has required much cleanup over the years. Most recently, 200,000 litres of liquid waste was removed from the site in 2017 (Credit: The Hamilton Spectator)

 

 

 

Ontario construction groups launch video series on excess soil management

In southern Ontario, the management and use of excess soil is a growing issue.  There has long been concerns of unscrupulous players wrongly classifying contaminated soil as excess soil and managing it incorrectly.  Likewise, there has been long-standing concerns expressed by those wanting to do the right thing of ambiguous and uncertain rules with respect to determining what is excess soil and how to manage it.  As a result, honest industry participants end up hauling excess soil to landfill that could have otherwise been utilized for useful purposes.

According to data compiled by the the Residential and Civil Construction Alliance of Ontario (RCCAO), Ontario’s  construction market generates almost 26 million cubic metres of excess construction soil every year.  About $2 billion is spent annually to manage excess soil – which comes from civil infrastructure projects such as transit, roads, bridges, sewers, watermains and other utilities.  Even though most municipal roadways contain only minor amounts of salt from winter road treatment, large quantities of soil are often hauled up to 100 kilometres away to designated dump sites, rather than being reused on site or at other nearby construction sites.

“Clean excess soil can be more responsibly managed through better upfront planning,” says Andy Manahan, executive director of the Residential and Civil Construction Alliance of Ontario (RCCAO). “That’s why we co-produced a three-part video series to increase awareness that there are alternatives to the ‘dig, haul long distances and dump’ approach.”

RCCAO teamed up with the Greater Toronto Sewer and Watermain Contractors Association (GTSWCA) to produce this video series to inform the public, government and industry on the benefits of using best management practices. It’s called “The Real Dirt on Dirt: Solutions for Construction Soil Management.”

There are a lot of trucks on the road travelling 60 to 100 kilometres to dump excess soil as a waste material – and that is completely wrong, says Giovanni Cautillo, executive director of GTSWCA.

“It’s not a waste – it’s a reusable resource,” Cautillo says. “When municipalities provide guidance to contractors about where soil from local infrastructure projects can be reused, the costs of handling and disposing of soil can be dramatically reduced. Wherever possible, soil should be reused onsite, but if this is not possible, having an approved reuse site within a close distance saves taxpayers money.”

When best management practices are used, there are fewer trucks travelling long distances, causing less wear and tear to the roads – and less traffic congestion. Fewer trucks on the road reduces greenhouse gas emissions, creating a cleaner, healthier environment.

The Ministry of the Environment, Conservation and Parks (MECP) is currently reviewing draft regulations to help improve ways to manage soil on building and infrastructure projects across the province. Manahan says that “a multi-ministry approach – environment, municipal affairs, transportation, infrastructure and others – will also help to achieve a more coordinated effort.”

Insight into the Hazardous Waste Management Industry – A Profile of Clean Harbors Facilities

by David Nguyen – Staff Writer

Clean Harbors is a hazardous waste management company operating across North America. Their location in Mississauga is a hazardous waste terminal and transfer station, receiving, handling, and transporting flammable solids destined to the U.S. for incineration. Proper Solids Handling Equipment will be required for the movement and transportation of these materials. Non-flammable solids and liquid hazardous waste is sent to their facility in Lambton, Ontario. The Lambton facility includes a hazardous waste landfill and a liquid hazardous waste incinerator, with some facilities using machines to help with their odour control while trying to improve the air quality.

Clean Harbors coordinates hazardous waste management solutions across the Canada-U.S. border with the help of something similar to this waste management software which could help keep things in order. It is makes business sense for the company to transport flammable solids that are hazardous to its U.S. incinerator instead of having a facility in Canada. “Liquid injection incinerators are a lot cheaper,” says Mike Parker, Vice President, Canadian Environmental Compliance. “There really isn’t a strong enough market to support [hazardous solid incineration] in Canada.”

Mississauga Site Activities

Carriers bring the hazardous waste to the transfer station, where the manifests and documentation are reviewed to ensure that the facility is permitted to receive the material. This is different to regular waste removal companies such as BestDealDumpsters.com who get rid of all types of household waste. Receiving times are typically planned ahead of time to prevent surges of shipments on site. Once off loaded, the waste is sampled to confirm the material profile noted in the manifest and then staged for further processing. The entire staging area is built over sealed drains leading to a blind sump to prevent any spills from leaving the site. “All the liquids from our sumps, even if it’s just rain water… get put into tanks and go down for incineration,” says Parker.

Every drum the facility receives has its contents verified, sampled, and tested. Samples are analyzed for PCBs, pH, ignitability/ flashpoint, sulfide, chloride, oxidation, cyanide, and water reactivity in order to get a profile for the waste, after which a code is attached to the drum to indicate its destination and disposal.

Staging Area (photo by David Nguyen)

This information is stored in their management system that tracks the inventory at their various facilities, including the shipping information and profiles of all items. The information is removed for approval to be received on site. The system also tracks the manifests for the generator, carrier, receiver, and the ministry, internal inspections, and monthly reports to be sent to the ministry.

After sorting and sampling, the waste is safely sorted into various streams for consolidation, bulking, or blending.

“It has to be in the same waste class to mix and match. We can’t mix something flammable with something non-flammable,” says Parker.

“Even if they are in the same waste class, we take samples from each drum, mix it together, and if nothing happens, we can do it” says Erica Carabott, Facility Compliance Manager.

Liquid waste is bulked in tank farms until there is enough to fill a taker truck to be sent to Lambton for incineration. Solid waste is loaded into pits where the material is shredded up, bulked, and mixed with a solidifying agent to take up any free liquids in the solid waste streams.

Lambton Facility Activities

Many of the materials received at the Mississauga Transfer station are transported to the Clean Harbors Lambton facility offers services including waste neutralization, incineration of hazardous waste, inorganic pre-treatment of hazardous waste, thermal desorption of solid and sludge, and landfill disposal of hazardous waste.

Liquid waste is blended in a controlled neutralization process at the acid and alkali plant before being fed to the incinerator. The liquid waste injection incinerator operates 24 hours a day, 7 days a week, consisting of a fix unit incinerator, a semi-dry spray dryer absorber, and a four-compartment baghouse. The site capacity is about 100 000 tonnes per year and can process pumpable material that does not contain PCBs, pathogens, radioactives, and cylinders.

Lambton Incinerator (Photo Credit: Clean Harbors)

The landfill is situated in natural clay, and accepts a variety of hazardous waste excluding explosives, PCBs, radioactive, pathological wastes, or compressed gasses. Due to the Land Disposal Restriction prohibiting the disposal of untreated hazardous waste on land, Clean Harbors has an inorganic solid pre-treatment processing plant which mixes inorganic waste (primarily metal bearing solids) with reagents to prevent the metals from becoming leachable.

Furthermore, a thermal desorption unit is used to condense and recover water and organics from organic solid waste. The waste is fed into a kiln that heats the waste to 400-450 degrees Celsius to strip the organics from the waste. The vapours are condensed to remove liquid organics during the process, with the remaining emissions vented to the incinerator. The residual solids are then tested for any remaining organics or metals, and then disposed of in the hazardous landfill on site.

“You can understand why it takes a lot of money to treat the stuff in the landfill. It cooks it for about a half hour – that’s a lot of heat and a lot of money” says Parker. “With testing at the front and testing at the end,” adds Carabott .

Clean Harbor’s Lambton Hazardous Waste Landfill (Courtesy: Clean Harbors)

These facilities and processes allow Clean Harbors to work with their clients to develop cost effective solutions to handling and disposing of hazardous waste materials throughout the Great Lakes Basin in both Canada and the United States. In addition, Clean Harbors conducts regular outreach programs with the local community regarding the safe operations and reporting conducted at the Lambton facility.

Special thanks to Mike Parker and Erica Carabott for taking the time to speak with me and show me around the Mississauga Transfer station.

Contaminated Site Clean-up Opportunities in China

As reported by the South China Morning Post, China’s government recently approved a new plan to tackle growing pollution threats in its countryside, and will strive to clean up contaminated rural land and drinking water and improve waste management.

The new plan, approved “in principle” by the Ministry of Ecology and Environment is the summer also mandates cuts in fertilizer and pesticide use and improved recycling rates throughout the countryside.

Industrial pollution of land in China. The authorities have been reluctant to divulge details of the localised scale of the problem (Image by JungleNews)

China is in the fifth year of a “war on pollution” designed to reverse the damage done by decades of tremendous economic growth, but it has so far focused primarily on air quality along the industrialized eastern coast, especially around the capital Beijing.

China’s countryside has struggled to cope with land and water pollution caused not only by unsustainable farming practices, but also by poorly regulated, privately-owned mines and manufacturing plants, as well as rising volumes of plastic waste.

Rehabilitating contaminated land has become a matter of urgency for the Chinese government, which is under pressure to maximize food production while at the same time it is setting aside one-quarter of the country’s land as off-limits to development by 2020.

Total arable land declined for a fourth consecutive year in 2017 as a result of new construction and tougher environmental requirements, the government said in May.

The State Council published a plan in February to deal with growing volumes of untreated rubbish dumped in the countryside, promising to mobilise public and private funds to make “noticeable improvements” to the living environment of rural regions by 2020.

It vowed to restore wetlands, plant trees and eliminate “disorderly” rural construction to improve the appearance of China’s villages, and would also focus on improving garbage and sewage treatment.

In August, the Chinese government enacted the Soil Pollution Prevention and Control Law.  This is the first time China has enacted a law targeting soil pollution.  For existing soil pollution, the law holds polluters and users (as it is rare in China for individuals to own land) accountable for a series of risk management and remediation obligations, with the polluters being primarily responsible.

According to an article by IISD, the estimated cost for remediation efforts between 2016 and 2020 at $1.3 trillion (USD). The government itself estimates it might be able to cover only a small fraction of the overall cost.  During China’s the 12th Five-year Plan (2011–2015), only $4.5 billion) was allocated to soil remediation, mainly for urban areas.

Combine polluter payments with government support and a prohibitive capital gap still exists in China’s efforts to restore land and protect public health. This gap will have to be filled by private sources.

Brownfield Remediation Success in Hamilton

A recent report by the City of Hamilton has revealed that significant progress has been made over the last 10 years to reduce the number of brownfield sites in the municipality.

According to Brownfield Inventory Report, there were 91 vacant brownfield sites listed by the City in 2008. As of early 2018, 51 of the sites had been developed representing over 72 ha. Of the 40 sites still considered vacant and contaminated, approximately 13.2 ha are within the Bayfront Industrial Area.

Hamilton is one of the oldest and most heavily industrialized cities in Canada and includes a large number of brownfields in Hamilton’s older industrial areas, downtown, and throughout the urbanized area.

Part of the success in Hamilton in brownfield’s redevelopment is the Environmental Remediation and Site Enhancement Community Improvement Plan (ERASE) (CIP) which began in 2001.

Since the ERASE CIP was approved, approximately 145 property owners and potential
property owners have been approved for Environmental Study Grants. A number of
these studies have led to brownfield sites being redeveloped. A total of 47 projects
have been approved by City Council for ERASE Redevelopment Grants. These
projects once complete will result in:

  • Over 380 acres of land studied;
  • Total assessment increase due to Environmental Remediation Grant in excess of
    $129,029,379;
  • Every $1 contributed by the City has generated $11.10 in private sector
    construction; and,
  • Remediation and redevelopment approval of approximately 210 acres of Brownfield land 123 acres (59% of approved land area) remediated to date.

In its 16 years, the ERASE CIP has proven to be very successful in providing the
financial tools needed to promote the remediation and redevelopment of Brownfield
sites. There is consistent support for the expansion of programming and updating of
policy in order to meet the significant challenges associated with Brownfield
redevelopment.

Two noteworthy recent brownfield remediation projects have included the Freeman Industrial Park, located at the site of former Otis Elevator and Studebaker plants, and the former Consumers Glass property.

The Freeman Industrial Park is the site of the old Otis Elevator and Studebaker plants. It is the largest brownfield development project in the City of Hamilton to date. the developer, UrbanCore Developments, has City approval to divide the 10.5-hectare property into 18 lots and build a road through the property.

440 Victoria Street, Hamilton (former Otis Elevator Building)

The Freeman Industrial Park property is zoned K, which allows nearly any type of heavy industry from fertilizer production to a coke oven. UrbanCore has prospective buyers for about half of the lots.

Initiated in 2014, the site clean up and remediation program on the Freeman Industrial Park is now complete.

On the Consumers Glass property, the City has plans to build a sports field. The property at Lloyd Street and Gage Avenue North is the future home of an outdoor sports facility, which will be an $8-million project that will replace the former Brian Timmis Field. In 2015, it was used as a parking lot for the Pan Am Games.

With respect to the existing inventory of brownfield sites, consideration by Hamilton city Counsel with respect to the viability of contaminated land to be used
for purposes such as the growing/harvesting of medical marijuana, given the concerns
expressed with respect to this industry placing pressure on current viable farm land.

Staff reviewed the prospect of using brownfield land for growing medical marijuana and noted that under Regulation 153/04, cultivation of marijuana would be treated as an agricultural operation, and therefore, deemed a more sensitive operation if located on former industrial or commercially used lands. There are companies similar to ILGM that sells seeds for the cultivation of marijuana. On this basis, a mandatory filing of a Record of Site Condition would be required and the threshold for site remediation would be one of the most onerous to conform. We are seeing the benefit that different dispensaries and programs are having on local areas and communities, allowing people to access marijuana for medical purposes. Hopefully, we will see more programs similar to the new jersey medical marijuana program developing in other areas and communities to allow more people to access medical marijuana to help them deal with any issues they have.

With the legal use of marijuana and other cannabis products growing, consumers have become more curious about their options. Some of the most popular of these products include cannabidiol (CBD). CBD can be extracted from hemp or from marijuana and is used in a number of different healthcare products for its potential health-boosting properties. If you are considering using CBD products, you might want to consider using this Plus CBD Oil coupon to secure a discount. Ultimately, remember to always do your research before trying any marijuana-based products.

Concern about Hazmat Incidents at Canada’s Proposed Spaceport

In a joint venture with several US firms, Halifax-based Maritime Launch Services (MLS) is building Canada’s first spaceport near Canso, Nova Scotia. At a total cost of $304 million—a figure that includes the cost of the first rocket launch and promotional expenses—the launch pad is slated to deliver commercial satellites to low Earth orbit aboard Ukrainian-built rockets on a due south trajectory, and at a cost of $60 million per launch.

Stephen Matier, left, president of Maritime Launch Services and Maksym Degtiarov, chief designer of the launch vehicle at the Yuzhnoye Design Bureau, talk with reporters at a meeting of the proposed Spaceport project team in Dartmouth, N.S. on December 11, 2017. (THE CANADIAN PRESS/Andrew Vaughan)

The Canso Spaceport Facility will be 20 hectares in size and is aimed at attracting firms that want to put satellites into orbit for commercial purposes.  The site will include a control centre, launch area and “horizontal integration facility,” where materials will be prepared for the launch and some propellants will be stored

The company would like to launch as many as eight rockets per year starting in 2022.

There are concerns about the spaceport from government experts.  Specifically, concerns related to environmental and health & safety issues.  Recently released documents released by the province detail numerous questions about the planned Canso Spaceport Facility.  Nova Scotia’s environment ministry will not approve the project unless their concerns are addressed.

The specific concerns of the N.S. Environment Ministry is how the company will address an explosion, crash or fuel leak.  According to the recently released government document, a spill would “destroy the impacted ecosystems with no chance of recovery within the next several hundred years.”

According to the Maritime Launch Services proposal, the rockets would use nitrogen tetroxide and unsymmetrical dimenthyl hydrazine, or UDH, for the second portion of their launch into the atmosphere.

A letter from the Canadian Defence Department says the military “does not have sufficient knowledge” to assess the impacts of an accidental discharge of the UDH on the land or surface water, but “suggests an assessment should be completed.”

A professor at the University of British Columbia has raised concerns about an “exceedingly toxic” rocket propellant that will be used at the Canso, N.S., operation. Michael Byers, a political science professor at UBC, said there is a danger associated with UDH — which he said is known in Russia as “the Devil’s Breath.”

Professor Byers stated “If something goes wrong on launch, you know, if the rocket were to tip over and explode, or if there were some kind of spill during transportation or assembly, you’d still have a serious health and environmental concern.”

Other government officials comment that there isn’t enough information in the proposal to assess potential dangers.

Chuck McKenna, a manager with the resource management unit of the provincial Environment Department, says detailed plans on how dangerous goods will be stored and handled weren’t provided.

He says this should include details on the potential effects of a chemical accident, prevention methods and emergency response procedures.

Johnny McPherson, an expert on air quality in the provincial Environment Department, says in his submission that the first stage propellants of a rocket can create “black carbon (soot)” that is “harmful if inhaled because of small particle size and damaging effects.”

The government comments were made in response to the environmental assessment of the project prepared by a consultant.

Nova Scotia Environment Minister Margaret Miller said last week the environmental assessment, submitted in July, didn’t contain sufficient information for her to make a decision on whether to approve the project.

Miller has given the company one year to provide additional information and studies.

The company’s president has said he’s confident the firm will finish the study in response to the concerns raised, and it is “optimistic” it can address the issues raised.

Gaps on the movement of dangerous goods in Northern Canada

As reported by the The Canadian Press, the Canadian federal government says it doesn’t know enough about how, when, and where dangerous goods move through the Canadian North, highlighting the potential risks of a major spill or other disaster.

As a result, the possible effects on public safety and the environment are also unclear, Transport Canada acknowledges.

The department is commissioning a study to help fill in the knowledge gaps and improve readiness when it comes to movement of goods ranging from explosives and flammable liquids to infectious substances and radioactive materials.

The effort will focus on regions north of the 55th parallel as well as on more southerly, but isolated, areas in eastern Manitoba and northern Ontario, says a newly issued call for bids to carry out the study.

The overall goal is to fully identify the hazardous substances transported throughout these areas and the major hubs that link to relevant airports, marine ports, ice roads, railroads, mines, refining sites, manufacturing plants and warehouses.

The information will help Transport Canada pinpoint potential risks and make decisions concerning safety regulations and compliance, the tender notice says.

A stark reminder of the difficulty of moving goods in northern Canada came when the only rail line to Churchill, Man., was flooded and it became impossible to deliver freight overland until an ice road was built.

There are also virtually no freight rail lines north of the 60th parallel, except for rail access to Hay River in the Northwest Territories, the notice says. Considering the seasonal nature of ice roads and ports, there are limited routes for movement of dangerous goods in or out of northern Canada and other remote areas, it adds.

The tenuous nature of northern transportation systems mean there are “gaps in information” about the kinds of dangerous goods transported, the volume of shipments and the sort of emergency response systems available.

“We continuously examine ways to make transportation in Canada safer for all and this assessment is part of our effort to ensure even greater knowledge regarding the handling of goods in the North,” said Transport Canada spokeswoman Annie Joannette.

She declined to provide additional information given the competitive tender process underway.

The most valuable element of the exercise could be the educational process of better informing people about the risks of transporting dangerous substances, said Rob Huebert, a northern studies expert at the University of Calgary.

“It’s always about the follow-through,” he said. “Because you can have all these exercises through the ying-yang, but if you’re not setting up the system properly and then maintaining the system, what’s the point of having it?”

Until now, Canada’s emergency preparedness efforts have largely been focused on maritime response and less on land-based accidents, he said.

“I think a lot of people always forget that the North is an area that is just so different from every place else.”

North American Rail Network (Transportation Safety Board of Canada)

competition to destroy chemical weapons launched by UK and US

The United Kingdom Defence and Security Accelerator (DASA), part of the Defence Science and Technology Laboratory (Dstl) and UK Ministry of Defence (MOD), has launched the ‘Don’t Blow It!’ competition, the first joint UK-US industry competition run by DASA and funded by the MOD and US Department of Defense (US DOD).

Competitors have been asked to identify innovative concepts or adapt current technologies to access, disable and destroy chemical and biological devices. This includes chemical and biological munitions, improvised explosive devices containing lethal agents or containers of bulk quantities of chemical or biological agents discovered on the battlefield or in other austere and resource-limited environments.

Defence Minister Stuart Andrew said:

Horrific incidents stretching from Salisbury to Syria this year have shown us that chemical weapons are sadly still very much a reality – but a reality that we are determined to deal with. Destroying these deadly weapons is a complicated process and not doing it properly could mean devastating collateral damage. These are challenges that we share with our allies like the US. Competitions like this help us to tackle them head on with some of the best and brightest minds across both our countries.

Although it is over 100 years since the first large-scale use of chemical weapons, the threat from both chemical and biological weapons persists. This has been demonstrated by the recent rise in the use of such deadly weapons on the battlefield and in targeted attacks.

Much progress has been made to destroy state-declared global stockpiles of chemical weapons through very successful large scale destruction programmes, utilising techniques such as incineration, explosive destruction or neutralisation. However, to meet emerging and future challenges, such as the destruction of smaller caches produced by terrorists in resource-limited or hostile environments such as Iraq or Syria, there needs to be a focus on developing more robust elimination capabilities that are less labour intensive.

The competition has an initial £500,000 to fund multiple proof-of-concept proposals at low Technology Readiness Levels. Additional funding of £1.5 million is anticipated to be available for future phases.

The competition is seeking innovative ideas from non-traditional supply sectors and is looking for ‘outside-the-box’ proposals that will:

  • enable rapid and flexible destruction
  • reduce logistical support requirements
  • maximise ease of operation and transportability
  • address a greater breadth of threats

MOD Chief Scientific Advisor, Dr Simon Cholerton said:

As the use of chemical weapons in Syria and the Novichok attack in Salisbury demonstrate, the risk from chemical weapons still remains and the issue of safely eliminating them from an austere tactical environment remains an enduring technical challenge. I am delighted therefore that we are working with our closest ally to launch a new industry competition to help us develop effective and safe elimination capabilities. Our collaboration is the first time we have launched a truly joint UK-US competition through the UK Ministry of Defence’s Defence and Security Accelerator, which is charged with enabling us to innovate by rapidly transforming the ideas of today into the capabilities of tomorrow.

Assistant Secretary of Defense for Nuclear, Chemical and Biological Defense Programs, US DOD, The Hon. Guy Roberts said:

The expanding proliferation of chemical weapons use, from state and non-state actors, portends the greatest threat of their use on the battlefield since World War I. My responsibility is to ensure our forces are protected from, and can fight through, any such threats. To that end, we must continually innovate our capabilities, and it is especially important to do so in collaboration with those who fight alongside us. This competition does just that. It allows us to jointly invest in research and development with our closest ally as well as seek innovative ideas from a broader set of brilliant minds who I am confident will lead us to creative solutions.

The competition was launched at an event in London on the afternoon of 26 September 2018. Potential suppliers were provided with context on the challenge by both UK and US speakers, as well as information on how to apply to the competition by DASA.

The submission deadline for proposals is 5 pm GMT (midday EST) on 7 November 2018.

Follow this link for more information on the competition

or contact DASA directly on [email protected]