Is Hazardous Waste Management Part of the Circular Economy?

Written by Supreet Kaur, ALTECH Environmental Consulting Ltd. and John Nicholson, Editor, Hazmat Management Magazine

There is a growing movement from every sector of the economy that recognizes that there needs to be a focus on a sustainable future by minimizing waste and maintaining natural resources. With the increase in industrialization, the main problem in the management of hazardous waste is that it poses a harmful impact on environment and human health.

The term “circular economy” is a new buzzword and has been identified as part of society’s move toward a sustainable future with the inclusion of the 3Rs and extended producer responsibility.  Can you apply circular economy practices to the management of hazardous waste?

Hazardous waste is the potentially dangerous by-product of a wide range of activities, including manufacturing, farming, water treatment systems, construction, automotive garages, laboratories, hospitals, and other industries. The waste contains chemicals, heavy metals, radiation, pathogens, or other materials. These wide range of toxic chemicals affecting environment and human health and involving several routes of exposure, depending on types of waste. Some toxins, such as mercury and lead persist in the environment for many years and accumulate over time.

Hazardous waste disposal is a challenge for many businesses and industries. Almost every size of industry, and some commercial enterprises, generate hazardous waste. The need for efficient hazardous waste management and disposal is important in order to minimize the risks to lives and the environment.

It has been demonstrated that it is possible to recycle some specific hazardous waste streams.  In fact, recycling is best way to manage hazardous waste to minimize the amount of hazardous waste.

The circular economy is aimed at continual use of resources and eliminating waste. Many industries are focusing on the circular economy to reduce their carbon footprints, reusing their products, and cost-effective methods of waste management.

At the point when waste is reused, everybody benefits in view of lower energy use, diminished ozone depleting substance, characteristic asset preservation, lower removal costs and, frequently, more effective creation by utilizing reused materials.

An example of an important industrial chemicals that eventually becomes a hazardous waste are natural and inorganic solvents. Solvents are incorporated in paints and cements, cleaners and degreasers, drugs and many other products. Solvents are also used in a wide assortment of businesses including hardware, car, drug and paint manufacturers. Many companies are require the safe management of their spent solvents.

Chemical Recycling in Canada

Fielding Environmental, headquartered in Mississauga, Ontario, is an example of a chemical recycler in Canada. It has been serving industry clients for over 55 years, specializing in the recovery of solvents, glycols and refrigerants from automotive, coating and paint, printing and pharmaceutical industries. It is the most accredited solvent recycler in Canada. Moreover, it is largest Canadian recycler company in recycling waste ethylene and waste propylene glycol.

Fielding has technologies which not only collect waste from several industries but also extract the best from these resources. They recover all the positive qualities in it and transform waste into new products. Fielding is able recycle waste solvents to a purity that allows the same organization to reuse it without limitations. If a customer prefers not to take back a recycled solvent, Fielding uses it as a feedstock in the synthesis of new products that is sold nationally as well as internationally.

The company not only focuses on waste management but mainly works on waste optimization. Waste optimization is to change the waste into new product or use it as fuel. “If we want to build circular economy, we have to change the waste paradigm”, Ellen McGregor, CEO of Fielding environmental.

If any solvent is unsuitable for recovery, Fielding utilizes it as a fuel. In this way, all incoming waste is either recycled or has its energy value recovered (sometimes referred to as the 4th R – reduce, reuse, recycle, and recover [energy]). Fielding believes this is the best approach to managing incoming hazardous waste.

“We need to redefine the 3R (reduce, recycle, reuse) waste management hierarchy. A hierarchy put disposal and incineration in the same pyramid.  We need to break these things apart.  We need to include energy recovery us the pyramid.” Ms. McGregor added.

Ms. McGregor stated that all levels of government have a role to play in encouraging the 3Rs with respect to hazardous waste and in respecting the important role of hazardous waste companies in communities.  “Government has to play role in whole notion of procurement. There must be X-percentage of recycling components in products manufactured. Also, government has to ensure that companies in circular economy are welcomed in community. Recyclers need to be in urban areas so they have access to quality roads and other facilities,” She added.

“Fielding is all about the waste optimization we are trying that our material does not find their way to our soil, air and water,” Ms. McGregor said.  “98% of our business serves the circular economy.”

Emergency Preparedness and Prevention under the U.S. Hazardous Waste Generator Improvements Rule

Written by Ryan W. Trail, Williams Mullen

Generators of hazardous waste have long understood the importance of emergency preparedness and prevention to regulatory compliance and facility safety.  Contingency planning and coordination with emergency service providers have been requirements of United States Resource Conservation and Recovery Act (RCRA) regulations for many years.  For states that have adopted the Hazardous Waste Generator Improvements Rule (HWGIR), however, new and more stringent requirements for emergency preparedness and prevention now apply.  These states include Virginia, North Carolina and South Carolina, as well as 28 other states.  All authorized states are required to adopt most aspects of the HWGIR, including those aspects discussed below, but many have not yet done so.

Under the old regulations, generators of hazardous waste (both small and large quantity) had to make arrangements with local emergency response entities, which may be called upon in the event of a release, fire, or explosion involving hazardous waste at the facility.  Facilities were required to make the emergency responders familiar with the layout of the site, the risks associated with the type(s) of hazardous waste onsite, the locations where employees would likely be throughout the site, and possible evacuation routes.  While not specified in the regulations, many facilities accomplished this by inviting local emergency response personnel to tour the facility.

Under the HWGIR, generators must still make arrangements with emergency response personnel. However, the associated recordkeeping requirements have changed.  Previously, there was no affirmative duty to document the arrangements.  Generators who were unable to make the necessary arrangements were required to document this shortcoming, but otherwise no recordkeeping obligation existed.  The HWGIR added a requirement that the generator must keep documentation of the fact that it made arrangements with local emergency responders.  The arrangements must be noted in the facility’s operating record.

Hazardous waste contingency plans are another essential element of emergency preparedness and prevention under both the prior regulations and the HWGIR.  A contingency plan ensures facility and emergency response personnel have complete and accurate information to respond safely and efficiently to an emergency involving hazardous waste.

The HWGIR created new obligations for facilities with hazardous waste continency plans.  One significant update is the requirement to produce a Quick Reference Guide as part of the contingency plan.  The Quick Reference Guide is intended to summarize the broader contingency plan and must include eight elements essential for local responders when an emergency occurs:

  1. Types/names of hazardous wastes and the hazard associated with each;
  2. Estimated maximum amount of each hazardous waste that may be present;
  3. Identification of hazardous wastes where exposure would require unique or special medical treatment;
  4. Map of the facility showing where hazardous wastes are generated, accumulated and treated and routes for accessing these wastes;
  5. Street map of the facility in relation to surrounding businesses, schools and residential areas for evacuation purposes;
  6. Locations of water supply (e.g., fire hydrant and its flow rate);
  7. Identification of on-site notification systems (e.g., fire alarm, smoke alarms); and
  8. Name of the emergency coordinator(s) and 7/24-hour emergency telephone number(s) or, in the case of a facility where an emergency coordinator is on duty continuously, the emergency telephone number for the emergency coordinator.

A facility that became a large quantity generator after the date the HWGIR became effective in its state must submit a Quick Reference Guide of its contingency plan to local emergency responders at the time it becomes a large quantity generator.  However, for large quantity generators in existence on the effective date of the HWGIR in their state, the Quick Reference Guide need only be submitted when the contingency plan is next amended.  A facility is required to amend its contingency plan if any of the following occur:

  • Applicable regulations are revised;
  • The plan fails in an emergency;
  • The facility changes—in its design, construction, operation, maintenance, or other circumstances—in a way that materially increases the potential for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency;
  • The list of emergency coordinators changes; or
  • The list of emergency equipment changes.

Violations for inaccurate, incomplete or deficient hazardous waste contingency plans are common among RCRA enforcement actions.  With the HWGIR now in effect in many states, facilities may soon be amending their contingency plans.  New requirements for documenting arrangements with emergency responders and creating and maintaining a Quick Reference Guide could easily be overlooked.  It is important for hazardous waste generators to review emergency preparedness and prevention requirements of the HWGIR carefully to ensure continued compliance.

Hazardous Waste Generator Improvements Rule81 Fed. Reg. 85732 (Nov. 28, 2016)

__________________________

About the Author

Ryan Trail represents companies facing complex environmental regulatory issues in the industrial, manufacturing, real estate and banking industries. He helps companies maintain compliance with constantly evolving environmental laws and regulations, and he counsels landowners, potential purchasers and lenders on environmental liabilities related to contaminated real estate. Ryan also helps clients obtain and comply with numerous environmental permits, including industrial wastewater discharge permits, stormwater permits and air permits.

Here’s the Deal: New Directions in Environmental Enforcement Under Biden?

Written by Gerald F. GeorgeDavis Wright Tremaine LLP

On December 23, 2020, the federal government published its inflation-adjusted civil penalties for a variety of environmental statutes, including the Clean Air Act (CAA) and the Clean Water Act (CWA). Those $25,000 per day or per violation penalties in the original statutes have now reached substantially higher levels, mostly in the $50,000-$60,000 range, but CAA penalties could reach $100,000.

That is a predictable change. What is less predictable is how enforcement will play out in the coming year with a new administration. Will the annual inflation adjustment to civil penalties be accompanied by greater enforcement?

The Trump Administration ended the year the same way it started its term in 2017, by attempting to roll back the environmental regulations and policies applied previously. The near-term result for enforcement is unclear, in part, because virtually every change made by the Trump Administration has been challenged in court, with a uniquely low success rate for the federal government.

With many of those challenges still pending, one wonders how the Biden Administration will approach these cases. The more important question for the regulated community is the approach the Biden Administration will take toward enforcement in general. Even with the Trump changes, the incoming administration retains a lot of regulatory authority.

Two reactions seem obvious. One is resurrection of an unspoken principle for challenging regulation: be careful. You may win this case, but you will still have to deal with the regulator when the case is over. Taking a hard-nosed approach can backfire if it means the regulators will be hanging on you like a cheap suit for the next four years, or you need agency approval for an essential expansion.

More optimistically, we are almost certain to see a resurrection of Supplemental Environmental Projects (SEPs), environmentally beneficial projects implemented by a violator in connection with a settlement. SEPs have been used in EPA settlements since 1984 to create semi-win-win resolutions for alleged environmental violations.

A violator might pay a penalty, but would offset some, if not most, of that by funding an environmentally friendly project. The community and the environment would benefit from the project; the company might even pay more out of pocket, but will see its money used for something positive, not just dumped into the U.S. Treasury general fund.

While questions about the propriety of SEPs have been raised over the years, the issue had always been resolved in favor of authorizing settlement projects directly related to the violations—part of the remedy, not unappropriated “free money” for boat ramps at the local reservoir. The Trump Administration took a harder line, resulting in the EPA and Department of Justice (DOJ)’s ending the use of SEPs in settlements.

The issue of SEPs then arose in the courts in two contexts. In Michigan, the federal government settled a long-running CAA case with the violator for a civil penalty. The private plaintiff in the case settled separately with the defendant, committing to further steps to improve air quality and to implementation of an SEP. The federal government objected to the settlement, but lost last year in the district court in U.S. v. DTE Energy Co.

In an unrelated case arising in Massachusetts, an environmental group challenged the implementation of the DOJ policy. In Conservation Law Foundation v. William Barr, the federal government argued not that SEPs were barred, but whether or not the government’s acceptance of an SEP in a settlement was within its discretion.

Whether one agrees with the policy, the prosecutorial discretion position makes sense. It also means that a decision favorable to the federal government would not bar it from reverting to its prior policy authorizing SEPs.

SEPs are extremely useful in structuring settlements. A minor loss of income to the U.S. Treasury is more than offset by the environmental benefits to the public, and the parties focus their discussions on addressing environmental problems, not on trying to save a few dollars in penalties.

Further, SEPs are particularly attractive in suits involving public agencies, where cash-strapped facilities can at least put their limited funds to work on real environmental problems important to their constituencies. It is galling to see a municipality paying money into the U.S. Treasury for failure to implement treatment improvements it cannot afford, making the cost of future compliance even more unaffordable.

In any event, fights over the size of penalties are a crapshoot for everyone and may well end up costing more than they save. E.g., Citgo’s effort to defeat a major penalty demand in connection with a spill from its refinery in Louisiana ($8 million penalty at District Court reversed by a Court of Appeals, $81 million penalty imposed on remand).

The next four years of environmental enforcement litigation will be interesting to watch. But aside from the litigation over old and new regulations, I predict enforcement will look more like what existed pre Trump, if not more aggressive.

It would behoove the regulated community to be ready to return to use of the traditional tools for defense of claims involving strict liability statutes. Watch the bottom line of your business, and avoid a hostile relationship with your (we hope) friendly, but ever present regulator.

_________________________

About the Author

Gerald George is a seasoned environmental attorney and litigator, with extensive experience in successfully resolving federal and state enforcement actions, natural resource damage actions, and citizen suits. Gerald also advises on regulatory matters involving air, water, waste, and environmental impact review laws. He has more than 40 years’ experience in civil lawsuits, including 30 years of handling major environmental litigation throughout the country.

$20 Million U.S. TSCA/Lead-Based Paint Penalty: Expensive Reminder to Manage and Audit Contractors’ Joint Regulatory Liabilities

Written by Patrick Larkin and Maram T. Salaheldin  Clark Hill PLC 

Renovation of homes built before 1978 frequently disturbs lead-based paint (LBP) and poses significant health risks, particularly for children. For this reason, companies that perform or subcontract renovation services are required to provide very specific, written LBP warnings and education materials to residents. Failure to comply with these obligations can result in significant penalties for non-compliance. The U.S. Environmental Protection Agency (EPA) enforces these rules on all companies that “perform renovations for compensation.” This means that retail sellers of renovation products (e.g., windows or woodwork) can face EPA enforcement for noncompliance even where they subcontract installation to third parties.

On Dec. 17, 2020, U.S. EPA and the Department of Justice (DOJ) announced a nationwide settlement with Home Depot related to home renovations that occurred between 2013 and 2019. The settlement resolves alleged violations of the EPA’s Lead Renovation, Repair, and Painting (RRP) Rule involving renovations performed by Home Depot’s contractors across the country on homes built before 1978. EPA identified hundreds of instances in which Home Depot failed to contract renovations or repairs with certified contractors, as well as instances in which Home Depot failed to establish, retain, or provide the required documentation to demonstrate compliance with the RRP Rule.

EPA’s proposed settlement with Home Depot includes a $20.75 million penalty—the largest such penalty to-date under the Toxic Substances Control Act (TSCA).

Compliance Lessons

Companies in the construction industry and beyond can learn several significant lessons from the Home Depot violations, including the importance of:

  1. Understanding Your Liability: Businesses sub-contracting regulated activities to third parties are not necessarily insulated from liability. Here, since Home Depot contracted with customers and received compensation to perform renovations of pre-1978 housing, it remained liable under the RRP Rule, regardless of its use of subcontractors. Home Depot failed to actively assess and control risk from noncompliance by itself and its subcontractors, resulting in a significant penalty. Understanding your liability, particularly in the context of subcontracting, is an important step towards reducing enforcement exposure for your business.
  2. Being Proactive about Compliance: Another important step to reducing your enforcement exposure is implementing a compliance management system to identify potential issues before they become a problem. A strategic option to reduce such exposure can be the use of environmental self-audit/self-disclosure programs, such as EPA’s Audit Policy. The EPA Audit Policy allows companies to reduce or eliminate penalty exposure from noncompliance at their facilities. In addition, under the LBP Consolidated Enforcement Response and Penalty Policy, renovators may succeed in receiving gravity-based penalty reduction for any RRP Rule violations that qualify for such reduction under EPA’s Audit Policy. While navigating the EPA self-audit program can be challenging, the benefits can often be great for businesses. Small businesses and new business owners, in particular, may wish to take advantage of the tailored incentives potentially available to them, including the ability for new owners to enter into audit agreements with EPA to receive affirmative resolution and negotiated timelines for completing corrective actions.

About the Authors

Pat Larkin practices exclusively in environmental law at Clark Hill PLC, including regulatory compliance, litigation, administrative law, and environmental counseling in business transactions. Pat regularly represents industrial, transportation, real estate and retail clients in air, water and waste permitting, compliance counseling and audits, voluntary site cleanups, government enforcement actions, and in agency rulemaking and associated stakeholder and guidance writing work groups.

Maram Salaheldin is an Associate in Clark Hill’s Washington DC office in the Environment, Energy & Natural Resources group. Her practice focuses on providing environmental management and regulatory compliance support to U.S. and multinational clients, with an emphasis on risks and liabilities arising under environmental, health, and safety (EHS) laws, particularly with regard to solid and hazardous waste management, including transboundary movements under the Basel Convention.

Addressing new and emerging challenges in nuclear emergency response

Written by Steven Pike, Argon Electronics

Radioactivity and natural sources of radiation are ever-present features in our environment, with radioactive substances playing an invaluable role in the development of global medicine, industry and agriculture.

The risk that exposure to radiation can pose to workers and the wider public however is something that must be continuously monitored and managed.

The regulation of ionising radiation is ultimately the responsibility of each individual nation, however there can be times when radiation risks transcend borders and where international cooperation is necessary in order to control hazards, prevent accidents and enhance operational capability.

The International Basic Safety Standards on Radiation Protection (IAEA Safety Series No.115) establish the basic quantitative and qualitative requirements for radiation safety as they relate to the practice of nuclear power generation and the use of radiation and radioactive sources in medicine and industry.

In addition, the standards also provide guidance on occupational radiation protection, the prevention of public exposure to radioactive materials released into the environment and the mitigation of incidents where there is risk of ionising radiation exposure.

Tackling nuclear safety post Fukushima

There is little doubt that the Fukushima Daiichi Nuclear Plant accident in March 2011 substantially influenced the way in which nations all over the world view their reliance on, and their relationship with, the power of nuclear energy.

In the months following the Fukushima disaster, many countries announced plans to review the safety of their nuclear reactors.

Germany is reported to have closed down seven of its seventeen reactors in response to the incident, while Switzerland permanently shut down the first of its five nuclear reactors in 2019.

Over the past decade we have also seen a increasing focus on the efficacy of radiation safety training in aiding operational readiness.

In the rare event that radiological accidents or incidents do occur, it is vital that emergency response teams are suitably equipped and prepared.

The provision of realistic radiation safety training exercises has continued to increase in popularity as CBRN instructors seek out more effective ways for their trainees to improve essential knowledge and practical skills.

In place of the more traditional approaches to radiation training (such as those where trainees are shown a visual representation of their instrument readings) many exercise coordinators are now turning to simulators that enable their trainees to handle highly realistic replicas of their actual operational equipment.

Realistic nuclear emergency response training

We have written previously about the role that simulator technology can play in enhancing the deployment of radiation safety training.

In Asia Pacific Fire magazine for example, we described how a US nuclear emergency response exercise was able to successfully incorporate simulator detector equipment into its training scenario.

The exercise involved the creation of a simulated plume, comprising the radionuclides 137C, 131I and 90SR, which was configured to saturate the training area. The trainees were then tasked with assessing the risk, selecting the appropriate equipment and determining what action was required.

The teams deployed a variety of simulator detector systems throughout, including simulators for the EPD-Mk2 dosimeter, the SAM 940 handheld radiation isotope identifier (RIID) and the RADeCO air sampler.

Adopting a simulator-based approach to training offered significant advantages both for the exercise coordinators and the participants.

Prior to the scenario, a preliminary trial run was conducted to ensure that the desired readings would be obtained in all of the required locations.

During the exercise itself there was the option to fast-forward or pause the exercise at any point in order to manage the precise staging of the scenario and to provide additional guidance where needed.

The students’ movements were also able to be monitored and recorded in real-time which aided in the process of after-action review.

The simulators generated instrument readings at a level that many of operators had never experienced before, highlighting some of the issues that can occur when readings are not fully understood or correctly communicated.

Significantly too, the exercise provided an opportunity for participants to work with teams of people with whom they had never previously interacted – replicating what is a common experience for emergency responders when they are required to attend major incidents.

Live hands-on training has a vital role to play in preparing radiation safety personnel for the challenges, the hazards and the unpredictable nature of radiological accidents.

As the technology that supports radiation safety training continues to grow in sophistication, the quality and effectiveness of nuclear emergency exercises is only set to increase.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

Assessing the Long-term Performance and Impacts of ISCO and ISBR Remediation Technologies

The Environmental Security Technology Certification Program (ESTCP), the U.S, Department of Defence’s environmental technology demonstration and validation program, recently issued a Fact Sheet that summarizes the results of a recent remediation project that assessed the long-term performance of in-situ chemical oxidation (ISCO) and fracturing-enhanced in-situ bioremediation (ISBR) at a site contaminated by trichloroethene (TCE), 1,4-dioxane (dioxane), and chromium.  The project was conducted at Air Force Plant 44, which is part of the Tucson International Airport Area federal Superfund site located in Tucson, Arizona.

The Arizona site comprises several primary source zones and a large, several kilometer long, groundwater contaminant plume that resides in the regional aquifer. The remedial action and performance monitoring were conducted by the Air Force contractor.

Performance monitoring data were obtained for a period of greater than three years after completion of ISBR. The project focused on treating the interface between the vadose zone and saturated zone. This interface region, which consists of primarily lower permeability (clay) media, has been identified as a primary location for remaining contaminant. Slow release of contaminant from this domain is considered a primary cause of the observed delayed attainment of cleanup objectives.

Key Result 1: ISBR employing enhanced reductive dechlorination (ERD) was effective.

TCE, chromium, and dioxane concentrations at site DP003 were reduced by 94, 83, and 36%, respectively. The observation of cis-1,2-dichloroethene, vinyl chloride, ethene, and ethane in groundwater samples after ISBR implementation (but not before) supports that reductive dechlorination of TCE was initiated in the treatment zone.

Key Result 2: ISBR employing enhanced aerobic cometabolism (EAC) was effective.

Dioxane and TCE concentrations at site DP003 were reduced by 92 and 60%, respectively. The concentrations of chromium remained essentially unchanged over the course of the EAC-ISBR treatment, which indicates that the generation of aerobic conditions had no measurable impact on chromium levels in groundwater.

Key Result 3: The performance results are consistent with other field tests.

A meta-analysis was recently reported of enhanced anaerobic bioremediation projects conducted for sites wherein the original contaminants of concern (COC) were either tetrachloroethene or TCE. The median concentration reduction was 90% for 34 sites for which the  erformance-monitoring period was at least three years. The %-reductions observed for the present study are consistent with the meta-data.

Key Result 4: The longer-term performance assessment provided more robust assessment.
Concentrations of the COCs measured after >3 years of monitoring were approximately 50% lower than the values measured after three months for a majority of the sampling points. This demonstrates the advantage of conducting longer-term performance assessments.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hazardous Waste Enforcement: U.S. Environmental Protection Agency and Michigan Hospital Enter into Consent Agreement

Written by Walter Wright, Mitchell, Williams, Selig, Gates & Woodyard, P.L.L.C.

The United States Environmental Protection Agency (“EPA”) and Spectrum Health Hospitals (“Spectrum”) entered into an October 29th Consent Agreement and Final Order (“CAFO”) addressing alleged violations of the Resource Conservation and Recovery Act (“RCRA”) hazardous waste regulations. See Docket No. RCRA-05-2021-0003.

The CAFO provides that Spectrum operates a facility (“Facility”) in Grand Rapids, Michigan.

The Facility is stated to include actions or processes causing the production of hazardous waste as that term is defined under 40 C.F.R. § 260.10. Therefore, Spectrum is stated to be a generator of hazardous waste under the relevant regulations.

The Facility is stated to have during the 2019 calendar year generated 1,000 kilograms or greater of hazardous waste, or generated 1 kilogram or greater of acute hazardous waste in some calendar months (qualifying it as a large quantity generator) which it shipped off-site to a treatment storage or disposal facility.

EPA is stated to have provided Spectrum the identification of potential RCRA violations. The Facility is stated to have engaged with EPA to expeditiously assess the matter and agrees to the entry of the CAFO.

The alleged violations include:

  • Notification of Change of Hazardous Waste Activity (failure to submit for the 2019 calendar year a notification of the change of the Facility’s type of hazardous waste activity to Large Quantity Generator status)
  • Annual Reporting (failure to prepare and submit a biennial report by March 1, 2020)

The CAFO requires that Spectrum file with the Michigan environmental agency an updated Notification of RCRA Subtitle C Activities and a Biennial Hazardous Waste Report covering the 2019 calendar year.

Spectrum neither admits nor denies the factual allegations in the CAFO.

A civil penalty of $11,471 is assessed.

A copy of the CAFO can be downloaded here.


About the Author

Walter Wright has more than 30 years of experience in environmental, energy (petroleum marketing), and water law.  His expertise includes counseling clients on issues involving environmental permits, compliance strategies, enforcement defense, property redevelopment issues, environmental impact statements, and procurement/management of water rights. He routinely advises developers, lenders, petroleum marketers, and others about effective strategies for structuring real estate and corporate transactions to address environmental financial risks.

Enhancing the simulation of real-life CBRN threats

Written by Steven Pike, Argon Electronics

Effective chemical, biological, radiological and nuclear (CBRN) threat detection relies on ensuring that response personnel are fully confident in the use of their operational equipment before they step foot into a real-life hazardous situation.

While essential knowledge can of course be gradually acquired through exposure to live incidents, the ability to handle vital CBRN detection equipment, and to interpret the readings that are obtained, is not something that can simply be ‘picked up on the job.’

What is crucial is that CBRN personnel are able to demonstrate proficiency in the detection and identification of the full spectrum of threats – from volatile organic compounds and toxic industrial chemicals (TICs) to chemical warfare agents (CWAs), biological warfare agents and combustible gases.

Much headway has been made in recent years in bringing together standardised suites of mission-specific CBRN technology such as the CBRN dismounted reconnaissance sets, kits and outfit (DR-SKO) systems created by Flir.

The DR-SKO programme, which first went into development in 2008, provides the US Army, Navy, Air Force, Marines and WMD Civil Support Teams with access to highly-advanced CBRN dismounted reconnaissance capability, aiding in the countering of both current and emerging CBRN threats.

What has also been recognised however, is that alongside the procurement of these powerful CBRN detection support systems there is the need for a rigorous and sustained foundation of training and instruction.

Realistic training for modern CBRN threats

A key priority of any CBRN training programme is to ensure that operators develop proficiency in using their operational equipment – be it in configuring the various modes of their detectors prior to deployment, or understanding the importance of managing their sieve-pack consumables and sieve-pack life indicator test protocol.

Equally, there is the need for trainees to understand and experience the factors that can impact on the effectiveness of CBRN detection – recognising for example how the use of personal protective equipment (PPE) can affect their physiological, psychological and sensory abilities during a live incident.

In addition, it is also important that they are adequately trained in the use of their decontamination equipment and in the various resources that they will need for the marking, sampling and reporting of CBRN threats.

The ongoing challenge for instructors is to expose their trainees to the full range of potential CBRN threats in a way that is safe, realistic and easily repeatable.

Safe and repeatable CBRN training

Live training exercises can offer an invaluable opportunity for hands-on experience of chemical warfare agents and radiological hazards in an environment that is as near to actual life as possible.

But such training exercises can also have their limitations. Safety considerations mean there will be necessary restrictions on the quantities of CWA substances that can be used or the level of radiological source activity that can be employed – all of which in turn can dilute the effectiveness of the reading-related, decision-making experience for trainees.

Live exercises can also represent a significant expense for organisations. Choosing to use actual detectors carries with it a certain degree of risk in terms of compromising the operational readiness of that equipment and isn’t generally the most practical setting in which to train personnel in the use of their actual detector equipment.

Taking control of CBRN scenarios

Increasingly CBRN instructors are turning to the use of CBRN simulator training systems in order to provide personnel with a way to train in the use of their actual operational systems.

Simulators offer several benefits – improving trainees’ proficiency in the use of their equipment, enabling instructors to ensure that all actions have been correctly performed, and avoiding the risk of expensive damage to operational detectors.

Crucially too, simulators provide the opportunity for trainees to familiarise with their detection systems in realistic environments where mistakes can be safely made and where the parameters of training exercises can be tightly controlled.

Successful hazard identification and management relies on robust operational capability.

While a substantial amount of money is often  spent on sophisticated CBRN-specific detection equipment it is also vital that these resources are put to best use by investing in the right training tools.

Procuring the latest detector equipment is just the first step.

What is also essential is that these valuable assets are supported by a rigorous programme of instruction that thoroughly tests trainees’ practical knowledge and strengthens their operational skill.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

How CBRN training programmes can benefit from lessons learned

Written by Bryan W Sommers, Argon Electronics

As major incidents such as the 2018 Novichok nerve agent poisoning in Salisbury have demonstrated, Chemical, Biological, Radiological and Nuclear (CBRN) emergencies can push national and international response capabilities to their very limits.

Conversely though, these types of challenging CBRN events can also provide a powerful learning opportunity by highlighting the core skills, resources and training that most effectively support and underpin emergency response.

Salisbury poisonings prompt chemical attack questions

In an article published by the Association of the United States Army (AUSA), Retired Col. Liam Collins, former director of the Modern War Institute at West Point, explores some of the key lessons learned from the Salisbury nerve agent attack.

He also discusses how this knowledge might best be applied in order to strengthen military readiness in the chemical environment, to identify readiness shortfalls and to improve proficiency.

Among Collins’ key observations is the importance of increasing the focus on CBRN training within the military operational force.

In particular, he emphasises the value of staging “operational-level war games” that incorporate not just disaster response but the full spectrum of CBRN operations.

Combat operations in a CBRN environment

As commander of a Special Forces detachment in the 1990s, Collins says, he routinely conducted close-quarters battle training with live ammunition while wearing protective masks and, on occasion, with full protective equipment.

But with the decision to minimise CBRN training during the wars in Iraq and Afghanistan, he believes the Army’s expertise in the CBRN environment underwent a period of “atrophy.”

The challenge now, says Collins, is to refocus military efforts on the conducting of combat operations in a CBRN environment, including decontamination training.

He also emphasises the importance of having access to sufficient stocks of equipment and PPE is vital in ensuring that personnel are able to operate for extended periods of time in environmentally challenging conditions.

“Taking a timeout, unfortunately, is not an option in a true chemical environment,” he says, “(and) even the most mundane of tasks can pose severe challenges.”

A joint-agency approach to CBRN response

Another factor that the Salisbury attack highlights is the diverse variety of individuals and teams that can be called on to respond to a CBRN emergency – from police, ambulance, the fire service and the military to healthcare organisations, crisis management institutions and detection/verification specialists.

How well these different groups are able to work with and alongside each other can be a hugely significant factor in the effectiveness of emergency response.

What is important is that CBRN training offers a sufficient degree of flexibility and adaptability in order to accommodate individual learning outcomes and to acknowledge differences in emergency management structures.

Enhancing CBRN training with real-world capability

Realistic exercises can provide an invaluable training ground for testing the effectiveness of response to a CBRN incident.

Through the provision of realistic scenarios there is the opportunity for personnel to hone their practical skills, strengthen their knowledge and enhance their decision-making abilities within a safe, immersive and controlled environment.

Incorporating the use of simulator detector equipment into military CBRN training continues to provide instructors with a flexible, scaleable and safe training solution.

In addition there is now also the option to take realistic CBRN instruction to a new level through the use of new software that interacts directly with actual operational detector equipment.

With the introduction of the new Radiation Field Training Simulator (RaFTS) for example, there is the opportunity to extend CBRN training capability beyond the realm of radiological training to encompass a much wider variety of hazardous substances, even more complex virtual scenarios and multiple instrument types.

The security environment in which CBRN responders are required to operate is in a state of continuing evolution – fuelled in no small part by the growth of international free trade, increased cross-border movement, globalisation, fundamentalism and the information-sharing capabilities of the internet.

In this challenging and ever-changing CBRN environment, a commitment to hands-on, realistic training has a vital role to play in ensuring a common knowledge base, a minimum level of best practice and the highest possible standard of operational readiness.


About the Author

Sergeant Major Bryan W Sommers has forged a distinguished career in the fields of CBRNe and HazMat training. He recently retired after twenty-two years service in the US Army, with fourteen years spent operating specifically in Weapons of Mass Destruction (WMD) environments. In 2020 he was appointed as Argon Electronics’ North American business development manager.

Repurposing: Another Tool to address Alberta’s Backlog of inactive and abandoned oil and gas sites?

Written by David McGillivary, Lorne Rollheiser, and Natasha Tames, Gowling WLG

The current path to land use reclamation of legacy oil and gas sites in Alberta is often a long one, imposing specific requirements on regulatees during the suspension, abandonment, remediation and reclamation stages of the process.   Companies often hold wells in abandonment status to avoid or delay clean-up costs and many such companies are struggling financially.  Despite having undergone reform, this regime has resulted in approximately 97,000 inactive wells, 71,000 abandoned wells, and 2950 orphan wells.

However, there are potential land uses that should be considered in respect of assessing (or reassessing) the status of these wells and associated infrastructure within the reclamation process.  These new and emerging land uses may represent alternative solutions with a number of environmental and economic benefits.  Some potential land uses that may result from repurposing include:

  1. Geothermal power generation:

Thousands of the inactive and orphan wells in Alberta have been identified as having appropriate proximity to existing infrastructure and having heat properties that could be used in electricity generation, industrial heat, or as direct heat sources.  Progress in this industry continues to be made and momentum appears to be increasing with Alberta’s 7 October 2020 announcement of its intention to “clear hurdles to the development of clean geothermal energy”[1].

  1. Exploration and extraction of other substances (such as hydrogen, helium or lithium) using legacy oil and gas infrastructure:

Another alternative that may transform old wells from liabilities to productive assets is the combination of existing technologies in oil extraction that have been altered and applied to extract hydrogen in a near zero-emissions process.  As an example, Proton Technologies continues to develop its process for hydrogen production[2], a two-step process of heating the reservoir to create free hydrogen and extracting pure hydrogen gas.  Proton continues to test and refine its technologies and has described its patented combination of heating reservoirs with Oxinjection wells and harvesting the hydrogen with Hygeneration wells. Both types of wells adapt existing equipment to a new purpose.

Subject to the growth of the hydrogen economy, these technologies have the possibility of being quickly implemented utilizing existing infrastructure, minimizing land use burdens.

  1. Carbon Capture and Storage (“CCS”):

Inactive or abandoned wells and associated infrastructure may also be repurposed to assist with carbon emission reductions through the application of CCS technology. The use of wellsites (with the appropriate technical alterations) for CCS is appealing as another tool to assist in confronting climate change. However, repurposing wellsites for CCS presents certain risks and repurposing activities are likely to be carefully scrutinized on a case-by-case basis to minimize risks and to ensure the integrity of a potential storage reservoir.

The increased use of CCS in Alberta also gives rise to potential spinoff commercial opportunities for the use and marketing of carbon dioxide as a commodity.  Carbon dioxide has some potential for use and marketability in support of climate change goals including through the displacing of products with higher life cycle emissions or in connection with products that have a permanent carbon retention component. [3]

  1. Production of biogas/upgrading into renewable natural gas for distribution through existing pipeline networks or for power generation:

The production of biogas, which may then be modified to produce renewable natural gas (“RNG”), represents a further opportunity for the repurposing of inactive or abandoned oil and gas sites and associated infrastructure.  Biogas primarily consists of methane (~60%) and carbon dioxide (~29%) and arises from the breakdown of organic matter generated from agriculture, forestry, landfill, or wastewater operations in an oxygen starved environment. This process is often done through use of an anaerobic digestor or by thermochemical means such as gasification. Biogas has a number of practical and commercial uses, including as a fuel source for farming operations and as a feedstock for power generation.  Upgrading biogas to RNG (i.e. increasing the methane content to 95-99%) results in a renewable equivalent to conventional natural gas.  RNG produced from biogas can be comingled with conventional natural gas, shipped, and stored using existing conventional natural gas infrastructure, often requiring few to no alterations.

Conclusion

The above options for land repurposing each give rise to potential environmental and economic benefits. From an environmental perspective, each is consistent with public policy objectives for the reduction of GHGs, advancing energy transition and decarbonization, and reducing the need to utilize undisturbed or valuable agricultural land for future development while awaiting regulatory closure on legacy oil and gas sites with uncertain timelines. Economically, repurposing turns a long-standing liability into an asset, supports economic diversification, and creates opportunity for collaboration and growth across a number of different industries and sectors.

However, each of the land uses discussed for site repurposing also entails certain risks from the application of new or emerging technologies to existing, aging infrastructure. Furthermore, the use of sites that are not fully reclaimed brings the prospect of unknown or lingering environmental issues.  Broad acceptance and investment in repurposing as an alternative to standard reclamation processes likely requires further dialogue among industry (across multiple sectors), government, and thought leaders to determine how repurposing initiatives may proceed as an additional option for handling Alberta`s backlog of inactive and abandoned wellsites and associated infrastructure to environmental and economic advantage for the province and the country. Some issues that warrant additional consideration include:

  • With reforms to Alberta`s liability management framework underway, is there a willingness on the part of government and regulators to accept repurposing as an alternative to full fledged reclamation? If so, what requirements apply for a site to be considered eligible for repurposing? How is liability in such cases to be managed and allocated?
  • What, if any, legislative modernizations or reforms are warranted to facilitate repurposing of sites for the land uses discussed above? Considerations may include streamlining of regulatory requirements and oversight, site access issues, and development of royalty and rental regimes.
  • What, if any, financial incentives or funding opportunities are needed to make repurposing projects economical?

NOT LEGAL ADVICE. Information made available on this website in any form is for information purposes only. It is not, and should not be taken as, legal advice. You should not rely on, or take or fail to take any action based upon this information. Never disregard professional legal advice or delay in seeking legal advice because of something you have read on this website. Gowling WLG professionals will be pleased to discuss resolutions to specific legal concerns you may have.

This article was republished with the permission of Gowling WLG.  It was originally posted on the JWN Energy website.

About the Authors

David McGillivary is an associate in Gowling WLG’s Advocacy Group. He focuses his practice on multiple facets of administrative law, with an emphasis on energy and environmental regulation, as well as Indigenous law.
Lorne Rollheiser is a partner at Gowling WLG and the head of the firm’s Oil and Gas Industry Group in Calgary, Alberta.
Natasha Tames is an associate in the Advocacy Department in Gowling WLG’s Calgary office. She practises in the areas of commercial litigation, insurance and professional liability.