Posts

B.C. government moves forward on action to protect coast

The British Columbia provincial government will be moving forward with consultation around four bitumen spill safeguards while referring to the courts the outstanding issue around B.C.’s right to protect B.C.’s coast, Premier John Horgan announced today.

“We believe it is our right to take appropriate measures to protect our environment, economy and our coast from the drastic consequence of a diluted bitumen spill,” said Premier Horgan. “And we are prepared to confirm that right in the courts.”

Premier Horgan says his government will be retaining expert legal counsel to ready a reference to the courts, adding that it may take several weeks to bring the reference forward. This reference will seek to reinforce B.C.’s constitutional rights to defend against the risks of a bitumen spill.

Crews on spill response boats work around the bulk carrier cargo ship Marathassa after a bunker fuel spill on English Bay in Vancouver, B.C., on Thursday April 9, 2015. (Darryl Dyck/The Canadian Press)

Premier Horgan says this safeguard has generated disproportionate and unlawful reactions from the Alberta government, specifically their decision to ban the import of wines from British Columbia.

“The actions by the Alberta government threaten an entire industry and the livelihoods of people who depend on it,” said Premier Horgan. “We have taken steps to protect our wine industry from the unwarranted trade action by the Government of Alberta.”

“It’s not about politics. It’s not about trade.  It’s about British Columbians’ right to have their voices heard on this critical issue,” said Premier Horgan. “And it’s about B.C.’s right to defend itself against actions that may threaten our people, our province and our future.”

The Premier adds that consultations will begin soon on the remaining four safeguards announced in January by Environment and Climate Change Minister George Heyman. These safeguards include:

  • Spill response time
  • Geographic response plans
  • Compensation for loss of public and cultural use of land
  • Application of regulations to marine spills

BC Seeks Feedback on Second Phase of the Spill Response Regime

WRITTEN BY:

Bennett Jones LLP

David Bursey, Radha Curpen, and Sharon Singh

[co-author: Charlotte Teal, Articling Student]

Phase-2 to BC’s Spill Response Regime

The British Columbia government is moving forward with the second phase of spill regulations, announcing further stakeholder engagement on important elements, such as spill response in sensitive areas and geographic response plans. The government will also establish an independent scientific advisory panel to recommend whether, and how, heavy oils (such as bitumen) can be safely transported and cleaned up. While the advisory panel is proceeding, the government is proposing regulatory restrictions on the increase of diluted bitumen (dilbit) transportation.

The second phase engagement process follows the first phase of regulatory overhaul introduced in October 2017, when the Province established higher standards for spill preparedness, response and recovery.

Photo Credit: Jonathan Hayward/Canadian Press

Feedback and Engagement

The Province is planning an intentions paper for the end of February 2018 that will outline the government’s proposed regulations and will be available for public comment.

In particular, the Province will seek feedback on:

  1. response times, to ensure timely responses to spills;
  2. geographic response plans, to ensure that resources are available to support an immediate response that account for the unique characteristics of sensitive areas;
  3. compensation for loss of public and cultural use of land, resources or public amenities in the case of spills;
  4. maximizing application of regulations to marine spills; and
  5. restrictions on the increase of dilbit transportation until the behaviour of spilled bitumen can be better understood and there is certainty regarding the ability to adequately mitigate spills.

What this means for industry

This second phase was planned follow up to the October 2017 regulations. Many of the proposed regulatory changes have been part of ongoing stakeholder discussions for the past few years. However, the prospect of permanent restrictions or a ban on the increased transportation of dilbit off the coast of B.C. and the prospect of further regulatory recommendations from the independent scientific advisory panel creates uncertainty for Canada’s oil sector.

The government’s emphasis on environmental concerns related to bitumen and its recent initiatives to restrict oil exports to allow time for more study of marine impacts will further fuel the national discourse on how to export Canada’s oil to international markets from the Pacific Coast.

____________________

This article was first published on the Bennett Jones LLP website.

About the Authors

US officials consider robots to prevent mine spills

As reported by the Associated Press, Crumbling mine tunnels awash with polluted waters perforate the Colorado mountains and scientists may one day send robots creeping through the pitch-black passages to study the mysterious currents that sometimes burst to the surface with devastating effects.

One such disaster happened at the inactive Gold King Mine in southwestern Colorado in 2015, when the United States Environmental Protection Agency (U.S. EPA) accidentally triggered the release of 3 million gallons of mustard-colored water laden with arsenic, lead and other toxins. The spill tainted rivers in three states.

a man in a hard hat sprinkling lime (white power) into a pool of muddy water next to a culvert. Here, lime is added to a settling pond to assist in the pH adjustment of the water (Credit: Eric Vance/U.S. EPA)

Now the U.S. EPA is considering using robots and other sophisticated technology to help prevent these types of “blowouts” or clean them up if they happen. But first, the agency has to find out what’s inside the mines, some of which date to Colorado’s gold rush in the 1860s.

Wastewater laden with toxic heavy metals has been spewing from hundreds of inactive mines nationwide for decades, the product of complicated and sometimes poorly understood subterranean flows.

Mining creates tainted water in steps: Blasting out tunnels and processing ore exposes long-buried, sulfur-bearing rocks to oxygen. The sulfur and oxygen mix with natural underground water flows to create sulfuric acid. The acidic water then leaches heavy metals out of the rocks.

To manage and treat the wastewater, the U.S. EPA needs a clear idea of what’s inside the mines, some of which penetrate thousands of feet into the mountains. But many old mines are poorly documented.

Investigating with robots would be cheaper, faster and safer than humans.

“You can send a robot into an area that doesn’t have good air quality. You can send a robot into an area that doesn’t have much space,” said Rebecca Thomas, project manager for the U.S. EPA’s newly created Gold King Superfund site, officially known as the Bonita Peak Mining District.

Instruments on the robots could map the mines and analyze pollutants in the water.

They would look more like golf carts than the personable robots from “Star Wars” movies. Hao Zhang, an assistant professor of computer science at the Colorado School of Mines, envisions a battery-powered robot about 5 feet long with wheels or tracks to get through collapsing, rubble-strewn tunnels.

Zhang and a team of students demonstrated a smaller robot in a mine west of Denver recently. It purred smoothly along flat tunnel floors but toppled over trying to negotiate a cluttered passage.

“The terrain is pretty rough,” Zhang said. “It’s hard for even humans to navigate in that environment.”

A commercial robot modified to explore abandoned mines — including those swamped with acidic wastewater — could cost about $90,000 and take three to four years to develop, Zhang said.

Robot in underground mine (Photo Credit: Tatlana Flower/AP File)

Significant obstacles remain, including finding a way to operate remotely while deep inside a mine, beyond the reach of radio signals. One option is dropping signal-relay devices along the way so the robot stays in touch with operators. Another is designing an autonomous robot that could find its own way.

Researchers are also developing sophisticated computerized maps showing mines in three dimensions. The maps illustrate where the shafts intersect with natural faults and provide clues about how water courses through the mountains.

“It really helps us understand where we have certainty and where we have a lot of uncertainty about what we think is happening in the subsurface,” said Ian Bowen, a U.S. EPA hydrologist. “So it’s a wonderful, wonderful tool.”

The U.S. EPA also plans to drill into mines from the surface and lower instruments into the bore holes, measuring the depth, pressure and direction of underground water currents.

Tracing the currents is a challenge because they flow through multiple mines and surface debris. Many tunnels and faults are connected, so blocking one might send water out another.

“You put your finger in the dike here, where’s the water going to come out?” Thomas said.

Once the U.S. EPA finishes investigating, it will look at technologies for cleansing the wastewater.

Options range from traditional lime neutralization — which causes the heavy metals dissolved in the water to form particles and drop out — to more unusual techniques that involve introducing microbes.

The choice has consequences for taxpayers.  If no company is found financially responsible, the EPA pays the bill for about 10 years and then turns it over to the state.  Colorado currently pays about $1 million a year to operate a treatment plant at one Superfund mine. By 2028, it will pay about $5.7 million annually to operate plants at three mines, not including anything at the Bonita Peak site.

The U.S. EPA views the Colorado project as a chance for the government and entrepreneurs to take risks and try technology that might be useful elsewhere.

But the agency — already dealing with a distrustful public and critical politicians after triggering the Gold King spill — said any technology deployed in Colorado will be tested first and the public will have a chance to comment before decisions are made.

“We’re certainly not going to be in the position of making things worse,” Thomas said. “So when I say we want to take risks, we do, but we want to take calculated, educated risks and not worsen water quality.”

Unique oil spill in East China Sea frustrates scientists

As reported by Cally Carswell in Nature, When the Iranian oil tanker Sanchi collided with a cargo ship, caught fire and sank in the East China Sea in mid-January, an entirely new kind of maritime disaster was born. Nearly two weeks later, basic questions remain unanswered about the size of the spill, its chemical makeup and where it could end up. Without that crucial information, researchers are struggling to predict the short- and long-term ecological consequences of the incident.

Sanchi Oil Tanker partially explodes in East China Sea (Photo Credit: CNN)

“This is charting new ground, unfortunately,” says Rick Steiner, a former University of Alaska professor in Anchorage who has studied the environmental impacts of oil spills and consulted with governments worldwide on spill response. “This is probably one of the most unique spills ever.”

The infamous spills of the past — such as the Deepwater Horizon disaster in the Gulf of Mexico in 2010, or the Exxon Valdez tanker rupture in Alaska’s Prince William Sound in 1989 — involved heavier crude oil. It can remain in the deep ocean for years and has chronic impacts on marine life. The Sanchi carried a little more than 111,300 metric tons of natural gas condensate, a lighter, more volatile petroleum product which doesn’t linger as long in the environment. Condensate has never before been unleashed into the sea in large quantities.

Unlike heavy crude, condensate doesn’t accumulate in shimmering slicks on the water’s surface, which makes it difficult to monitor and contain. Neither does it sink to the ocean floor, as do some of the heavier constituents in crude over time. Rather, it burns off, evaporates or dissolves into the surface water, where some of its chemical components can linger for weeks or months.

“Most oil spills have a chronic toxicological effect due to heavy residuals remaining and sinking over time,” says Ralph Portier, a marine microbiologist and toxicologist at Louisiana State University in Baton Rouge. “This may be one of the first spills where short-term toxicity is of most concern.”

Missing science

A significant, but unknown, portion of the Sanchi’s condensate probably fuelled the fires that followed the collision. In the waters immediately surrounding the tanker, Portier says, the conflagration and gaseous fumes would have killed off or injured phytoplankton, along with birds, marine mammals and fish that were caught in the vicinity when the tanker ignited.

Moving beyond the fire, the impact of the accident becomes harder to discern. That’s because the exact chemical composition of the condensate has not yet been made public, Steiner says, and because no one knows how much of the condensate dissolved into the water.

“The part I’m most worried about is the dissolved fraction,” Steiner says. Toxic chemicals in the condensate could harm plankton, fish larvae and invertebrate larvae at fairly low concentrations at the sea surface, he says. Fish could suffer reproductive impairments so long as chemicals persist in the water, and birds and marine mammals might experience acute chemical exposure. “In a turbulent, offshore environment, it dilutes fairly quickly,” he says. “But it’s still toxic.”

Because this type of spill is new, Portier says, researchers don’t yet understand the ultimate consequences of acute exposure to condensate in the sea, where it’s breaking down and dispersing. “That’s really where the science is missing,” he says.

Destination unknown

Researchers are also scrambling to assess where pollutants from the Sanchi could travel. Groups in both China and the United Kingdom have run ocean-circulation models to predict the oil’s journey, and the models agree that much of the pollution is likely to end up in a powerful current known as the Kuroshio, which flows past southeastern Japan and out to the North Pacific. The European models suggest that chemicals from the Sanchi could reach the coast of Japan within a month. But the Chinese models indicate that they are unlikely to intrude on Japanese shores at all.

Katya Popova, a modeller with the National Oceanography Centre in Southampton, UK, isn’t sure why the models disagree. But she says that the discrepancy points to the importance of forging international collaborations to increase confidence in model projections during emergencies. “This is something that the oil industry should organize and fund to improve preparedness,” she says.

Fangli Qiao with China’s State Oceanic Administration in Qingdao says his group’s models indicate that the pollution’s probable path overlaps with Japanese sardine and anchovy fisheries. But Popova cautions that the models are not necessarily good indicators of potential harm to fisheries or coastlines.

“All we’re saying is, if something is spilled here at this time, we can give you the most probable distribution,” she says. “We don’t know what type of oil or how much.” Those are crucial details because condensate components could degrade or evaporate before reaching important fisheries or shores. “A monitoring programme is the most pressing need right now,” Popova says, “to see where it goes and in what concentration.”

Yet Steiner says that comprehensive environmental monitoring doesn’t seem to have started. Official Chinese-government statements have included results from water-quality monitoring at the wreckage site, but none from the downstream currents that could be dispersing the pollution. “Time is of the essence, particularly with a volatile substance like condensate,” Steiner says. “They needed to immediately be doing plankton monitoring, and monitoring of fish, sea birds. I’ve seen no reports of any attempt to do that.”

Nature 554, 17-18 (2018)

doi: 10.1038/d41586-018-00976-9

Spill Response Questioned for Pipeline underneath the Great Lakes

As reported in the Maritime Executive, Canadian pipeline operator Enbridge is engaged in a debate with environmental groups over the operation of an underwater pipeline that runs beneath the Straits of Mackinac, the narrow waterway between upper and lower Michigan.

Last month, Enbridge reached an agreement with Michigan state government that allows it to continue operating the line, except during weather conditions that would interfere with a spill response.  The agreement defined poor weather as wave heights over eight feet.  In return, Enbridge promised to study the possibility of replacing the line – which sits above the surface of the lakebed – with a pipe buried in a tunnel.  The firm said that it would also look at measures to reduce the risk of damage to the current pipeline from boat anchors.

Red lines show where Line 5 crosses Straits of Mackinac (Source: Enbridge)

Recently, Michigan’s Pipeline Safety Advisory Board called for the Governor of Michigan to shut down the line until repairs are made to areas where the exterior protective coating is missing.  It also requested that State Government’s deal with Enbridge be revised to allow pipeline operations only when waves are three feet high or under.

Local environmental advocates contend that these measures do not go far enough.  These ativists say that the board and the governor did not take into account a prominent feature of wintertime navigation on the Straits of Mackinac: ice.  The Coast Guard is the only entity in the region with icebreakers, and its vessels are usually busy ensuring the safety of navigation during the wintertime.  In the event of a spill, the service says, the nearest icebreaker could be up to two days away.

In congressional testimony last month, Coast Guard Commandant Adm. Paul Zukunft said bluntly that his service is not prepared to handle the worst-case scenario for pipelines like Line Five. “I will go on the record and say that the Coast Guard is not Semper Paratus [always ready] for a major pipeline oil spill in the Lakes,” he said.

Enbridge says that Line Five’s dual 20-inch pipelines remain in excellent condition and have never experienced a leak in their 60 years of operation. The line is used to transport natural gas liquids, light crude oil and light synthetic crude, and it supplies most of Michigan’s propane.

“We’re committed to the letter and spirit of this important agreement [with the governor], and to the options outlined in the agreement that move us to a longer-term set of decisions about the future of Line Five,” said Enbridge spokesman Guy Jarvis, speaking to Michigan Public Radio.

 

Nearly $3 million awarded for R&D of Marine Oil Spill Response Technology by Canadian Federal Government

The Canadian federal government recently announced investments of $2.89 million for four projects to enhance marine incident prevention and responsiveness along Canada’s ocean coastlines.

Centre for Cold Ocean Resources Engineering (C-CORE)

Through its Oil Spill Response Science (OSRS) program, the federal government provided $991,500 to C-CORE, a St. John’s-based research and development company, to increase the efficiency of existing mechanical oil recovery systems for heavy oil products in harsh, cold environments.  The government of Newfoundland and Labrador will also provide $428,500 to the project.

“This project leverages C-CORE’s expertise in analytical modelling, computer simulation and large-scale physical tests to assess and optimize technology performance in harsh environments,” Mark MacLeod, C-CORE president and chief executive officer, said in a statement.

Lab-scale test apparatus for oil recovery

The main intermediate outcome of this project consists of an improved oil spill collection and separation system that can be integrated in an efficient response technique including a specially designed vessel.  The system will be based on the established concepts and proven technologies for recovery of heavy oil spills from sea water in cold and ice prone ocean environments.

The long-term outcome of the project will include specialized vessels with the required detection, storage, and spill removal systems, tested and proven in the real life conditions.

Project partners with C-CORE include Elastec, Eastern Canada Response Corporation Ltd. (ECRC), and InnovatechNL.

University of Toronto

A further $400,000 will go to a University of Toronto project that will develop a sorbent-based direct oil collector (called In-Situ Foam Filtration System or ISFFS) for use in oil spills.  This system will be capable of directly reclaiming the dissolved, emulsified, dispersed, and free oil from marine spill sites.  To meet this objective, the development of advanced functional foams (sorbents), implementing a bench-top system, and design and optimization of in-situ filtration process as a proof-of-concept will be undertaken.

The ISFF will directly collect the oil from the spill site by pumping through oil sorbent bed, which serves as the filtration media.  For this type of foam, there is no need for high oil-sorption capacity thus, functionalizing the foam with toxic and expensive elements can be avoided along with minimizing material costs.  Moreover, the in-situ filtration will make the oil sorption process continuous, simplifies oil collection, making oil spill response quicker and more cost effective.

Project partners include Tetra Tech, Polaris Applied Sciences Inc., Dr. Foam Canada, Gracious Living Innovations Inc., and ShawCor Ltd.

University of Alberta’s Advanced Water Research Lab

The OSRS program will be contributing $600,000 towards a $1.65 million project be undertaken at the University of Alberta.  The project involves the development of an on-board membrane based hybrid oil/water separation system.  If successfully developed, the system will significantly increase the capacity of recovery vessels that physically collect oil spilled at sea, thereby reducing the cost and spill response time for cleanup.  The technology can be directly and easily incorporated into existing rapid deployment spill clean-up systems mounted on ships or barges.  It would be ready to commercialize for manufacturers of existing oil spill clean-up tankers, making the research easy to implement for large or small-scale spills and for potential use in future high-risk areas of development.

BC Research Inc.

Finally, the federal OSRS program committed $925,000 to BC Research Inc., a company with a broad experience in chemical product development, to further develop a hybrid spill-treating agent (STA) that will help slow or prevent the spread of an oil slick on water.

If the R&D project is successful, a hybrid STA will be commercially available that can be used to combat marine oil spills at large scale.  The hybrid STA would have both gelling and herding properties, to prevent or slow down the spreading of an oil slick by rendering it into a thickened (gelled) state, as well as to use it as a herding agent, to facilitate either controlled burn or skimming operations.

Current oil recovery rates for spills on water are estimated to be in the range of 10-20%.  With current STAs, there are few options to prevent or slow down weathering processes, including spreading and dispersion. Delaying the spreading and weathering process would potentially facilitate cleanup and improve the degree/rate of oil removed.

Project partners include NORAM Engineers and Constructors and the University of British Columbia.

Volunteers cleaning Ambleside Beach in West Vancouver, 1973. (Source: John Denniston)

RFPs for Spill Response Equipment by Canadian Coast Guard

The Canadian Coast Guard is soliciting bids for new spill response equipment for use on its marine vessels.  The equipment will be used to contain and remove oil and other contaminants from the water in the case of a spill.

The RFPs can be found at the following web sites:

All interested suppliers may submit a bid which is open to companies from Canada, the United States, and other countries that are part of various trade agreements with Canada.

The competitive procurement strategy will be based on lowest bid meeting the technical specifications.

This will be the first equipment acquired under the Environmental Response Equipment Modernization initiative of the Oceans Protection Plan.  The equipment will include curtain booms, high-speed sweep systems, and small, portable multi-cassette skimmers.

The Environmental Response Equipment Modernization initiative will bring the Coast Guard in line with and beyond current standards regarding environmental spill response and take advantage of innovations and advancements in technology.

B.C. First Nation says it has created world-class oil spill response plan

As reported by CTV News, A British Columbia First Nation has released a plan it says will give it a leading role in oil spill prevention and response on the province’s central coast.

A report from the Heiltsuk Nation calls for the creation of an Indigenous Marine Response Centre capable of responding within five hours along a 350 kilometre stretch of the coast.

The centre proposal follows what the report calls the “inadequate, slow and unsafe” response to the October 2016 grounding of the tug the Nathan E. Stewart that spilled about 110,000 litres of diesel and other contaminants.

Bella Bella Oil Spill (Photo Credit: HEILTSUK FIRST NATION)

Heiltsuk Chief Councillor Marilyn Slett says during that disaster her people saw what senior governments had described as world-class spill response and she says the Heiltsuk promised themselves that this would never happen in their territory again.

The report says the proposed centre, on Denny Island across from Bella Bella, and satellite operations dotted along the central coast, would need a total investment of $111.5 million to be operational by next summer.

Unlike current response programs which the report says are limited specifically to spills, the new centre would answer all marine calls with the potential for oil contamination, including groundings, fires, bottom contacts and capsizings.

“(The centre’s) effectiveness hinges on a fleet of fast response vessels capable of oil clean up and containment, and a tug and barge system providing storage and additional oil spill clean-up capabilities,” the report says.

The barge would also be equipped with enough safety gear, provisions and living space to allow a response team to remain on site for up to three weeks without outside support.

The marine response centre would have annual operating costs of $6.8 million, covering a full-time staff and crew of 37.

“From Ahousaht with the Leviathan II to Gitga’at with the Queen of the North to Heiltsuk with the Nathan E. Stewart, Indigenous communities have shown that we are and will continue to be the first responders to marine incidents in our waters,” says the report, signed by Slett and hereditary Chief Harvey Humchitt.

Indigenous rescuers were first on the scene when six people died after the whale-watching vessel the Leviathan II capsized north of Tofino in 2015. Two people were killed when the Queen of the North hit an island and sank in 2006 west of Hartley Bay and First Nations helped in the rescue.

“The time has come to meaningfully develop our capacity to properly address emergencies in our territories as they arise,” the report says.

New spill reporting, response and recovery requirements in British Columbia

As reported by Norton Rose Fulbright, the Province of British Columbia recently brought into force a new land-based spills regime and three new regulations requiring transporters of liquid petroleum products to have provincial spill response plans, to test such plans and to report and clean up spills. The new regulations apply to two categories of people:

  • “regulated persons,” which are rail and highway transporters in possession, charge or control of 10,000 litres (62.898 barrels) or more of liquid petroleum products and pipeline operators with any quantity of liquid petroleum products in their pipeline; and
  • “responsible persons,” which are persons in possession, charge or control of a substance when a spill occurs or is imminent.

The three new regulations are the Spill Contingency Planning Regulation, the Spill Preparedness Recovery Regulation and the Spill Reporting Regulation.

Spill contingency planning

Regulated persons are required to develop and maintain spill contingency plans based on a worst-case scenario spill. Investigations, tests and surveys must be undertaken to determine the magnitude of the risks to human health, the environment and infrastructure from a worst-case spill. Pipeline and rail transporters must have their spill contingency plans in place by April 30, 2018, while trucking firms have until October 30, 2018.

Spill response efforts have failed to contain an estimated 110,000 litres of diesel and other petroleum products from the tugboat Nathan E. Stewart, which ran aground Oct. 13 in the Seaforth Channel near Bella Bella. (Photo Credit: Ian McAllister/CBC)

It is important to note that, while the spill planning obligations may resemble transportation of dangerous goods-type plans, they impose new requirements.

Spill reporting

New spill reporting requirements require a responsible person to immediately report any intentional or unintentional spill of a substance into the environment that may cause, is causing or has caused an adverse effect to water, the environment, human health or property if the volume of the substance exceeds the amounts set out in a schedule to the Spill Reporting Regulation or if the substance has or is likely to enter a body of water, regardless of the volume. Natural gas spills greater than 10 kg and releases from breakages of pipelines or fittings operated above 100 psi must also be reported.

The new regulation expands the scope of spills that must be reported, as it removes the previous volume/quantity threshold for spills to water.

It also expands the information that must be reported.

If a spill occurs or is imminent, a verbal report must immediately be made to the BC Provincial Emergency Program’s spill reporting hotline (1-800-663-3456) by the responsible person. New requirements stipulate the initial report must include the name of the owner of the spilled substance and a description of the source of the spill.

Starting on October 30, 2018, a written report must also be made within 30 days of the spill, or as soon as practicable on the minister’s request. An end-of-spill report must also be made within 30 days of the end of a spill’s emergency response activities.

Spill response

A responsible person must ensure persons with the skill, experience, resources and equipment arrive at the spill site within a prescribed period and activate an incident command system. They must also ensure actions are taken to address the threat or hazard caused by the spill, including assessing, monitoring and preventing the threat or hazard; stabilizing, containing and cleaning up the spill; identifying the immediate and long-term risks and impacts of the spill; and taking steps to resolve or mitigate such risks and impacts.

 

New spill rules tag transport companies with response, recovery costs in B.C.

As reported by Dirk Meissner of the Canadian Press, the Government of British Columbia has introduced pollution prevention regulations to hold transport companies moving petroleum products across the province responsible for the costs of responding to and cleaning up spills.

Environment Minister George Heyman said recently that the new regulations will take affect at the end of October and apply to pipeline, railway and truck company owners and transporters moving more than 10,000 litres of liquid petroleum products.

The rules increase responsibility, transparency and accountability for operators who transport potentially dangerous products through B.C., he said.

“I would hope that business doesn’t believe that individual members of the public through their tax dollars should be responsible for cleaning up spills they incur in the course of doing business and making a profit.”

The aim of the new rules is to prevent spill sites from being left contaminated for months and sometimes years, Heyman said, noting companies will be required to submit spill response and recovery plans ahead of moving their products.

“Most people subscribe to the polluter pay principle,” he said. “These regulations also require that spill contingency plans be put into place and that recovery plans and reporting plans be implemented in the case of a spill. That’s just reasonable.”

CN Rail said in a statement that it continues to work with the B.C. government and its industry partners on emergency response and preparation plans. The railway transports oil and numerous other products, including grain, across B.C.

“Emergency and spill response preparation and training is an important part of our business,” the statement said. “CN has in place emergency response plans and conducts spill and emergency response training with stakeholders across our network.”

The B.C. Trucking Association said in a statement that it supports the province’s new rules.

“We have been actively engaged in working with the government on the development of these regulations because the safety of our drivers, the public and the environment is our number one priority,” the statement said.

New pollution prevention regulations will hold transport companies and pipeline operators moving petroleum products across British Columbia responsible for spill response and recovery costs. A pipeline at the Westridge Marine Terminal in Burnaby, with an oil tanker in dock on Burrard Inlet.

Last spring, the previous Liberal government amended the Environmental Management Act to include some of the new regulations, but Heyman said he further tweaked the polluter pay regulations to ensure annual public reporting by the government.

He said he also shortened the deadline for operators to put their spill contingency plans in place to one year for trucking companies and six months for railways and pipelines.

The new rules do not apply to marine vessels carrying petroleum products along the B.C. coastline.

“Marine spills are regulated by the federal government but there is some jurisdiction for the province if a marine spill ends up washing onto the shoreline of B.C.’s jurisdiction or the seabed,” Heyman said.

The province is developing a strengthened marine response and recovery program that complements federal spill regulations, he added.

The new regulations come on the one-year anniversary of a fuel spill off B.C.’s central coast, where a tug sank, spilling more than 100,000 litres of diesel into waters near the Great Bear Rainforest.

Marilyn Slett, chief of the Heiltsuk First Nation, said the sinking of the tug, Nathan E. Stewart, has had devastating social and economic impacts on her community.

A valuable fishing area remains closed a year after the spill and many Heiltsuk face the prospect of a second year without revenue from the area’s valuable shellfish species, she said.

by Dirk Meissner, The Canadian Press