Posts

Bitumen floats longer than expected, Natural Resources Canada research shows

As reported in the Vancouver Sun, researchers at Natural Resources Canada are discovering important characteristics of bitumen (the un-processed form of crude oil from the Alberta oil sands) and its interactions with the environment.  Information from the research will be useful in the development of strategies and technologies to clean-up bitumen in the event that is leaks into the environment as a result of a pipeline leak or tanker spill.

One important question with respect to bitumen is whether it sinks or floats when it hits the water. The short answer is it floats, most of the time, according to a growing body of research being compiled by Natural Resources Canada scientists.

Researcher Heather Dettman, a senior scientist with Natural Resources Canada in Devon, Alta., is leading a team looking into some of those questions in research under the federal government’s world-class tanker safety program and ocean protection program.

Postmedia caught up with her and a spokesman from Western Canada Marine Response Corp. to talk about answers.

Bitumen

Q: What is diluted bitumen?

A: Bitumen is the basic, tar-like petroleum product extracted from the Athabasca oilsands, which are oil deposits that were first formed deep underground, but were moved closer to the surface by geological movements of the earth. That allowed microbes to degrade the components that make up gasoline and diesel leaving only its asphalt components. Producers inject those lighter components back into bitumen to make it thin enough to flow through pipelines.

Q: How would rough seas change the behaviour of diluted bitumen?

A: “From a density perspective, it will be floating unless it’s really stormy, then it can go anywhere, the same as any other petroleum product,” Dettman said.  If a storm pushed bitumen ashore, it would pose the problem of having to clean it up on land.

Q: Has there ever been a spill of diluted bitumen on the coast?

A: The biggest spill that the Western Canada Marine Response Corp. has dealt with involved a mix of bitumen and synthetic oil, said spokesman Michael Lowry.  That was the 2007 puncture of Kinder Morgan’s Trans Mountain pipeline in Burnaby that led to about 100 tonnes of oil flowing down storm drains into Burrard Inlet.  In nice weather and close to the industry-funded spill responders’ facilities, Lowry said they were able to recover 90 per cent of the oil.

“Those are ideal conditions; I can’t extrapolate those to other spills for sure,” Lowry said.

Kalamazoo River diluted bitumen spill clean-up

Q: How do you clean up a bitumen spill?

A: Lowry said methods haven’t changed much over the years. Chemical dispersants, in situ burning and mechanical recovery are the techniques that responders use, but since the first two require government permission, the corporation focuses on mechanical recovery — booming and skimming. From its 2007 experience, Lowry said responders learned that its brush skimmers — conveyors that rotate heavy plastic brushes over the surface to collect oil — were particularly effective.

“Conditions play a huge role in recovery,” Lowry said. “High winds are going to impact your ability to respond and rough seas definitely impede your ability to respond.”

Q: What research is being done to improve spill response?

A: Lowry said new tools are being developed, such as advanced booming systems that perform better under tougher conditions, which the corporation deploys.  In the meantime, Lowry said Environment Canada and Natural Resources Canada are putting resources into studying the topic.

Nearly $3 million awarded for R&D of Marine Oil Spill Response Technology by Canadian Federal Government

The Canadian federal government recently announced investments of $2.89 million for four projects to enhance marine incident prevention and responsiveness along Canada’s ocean coastlines.

Centre for Cold Ocean Resources Engineering (C-CORE)

Through its Oil Spill Response Science (OSRS) program, the federal government provided $991,500 to C-CORE, a St. John’s-based research and development company, to increase the efficiency of existing mechanical oil recovery systems for heavy oil products in harsh, cold environments.  The government of Newfoundland and Labrador will also provide $428,500 to the project.

“This project leverages C-CORE’s expertise in analytical modelling, computer simulation and large-scale physical tests to assess and optimize technology performance in harsh environments,” Mark MacLeod, C-CORE president and chief executive officer, said in a statement.

Lab-scale test apparatus for oil recovery

The main intermediate outcome of this project consists of an improved oil spill collection and separation system that can be integrated in an efficient response technique including a specially designed vessel.  The system will be based on the established concepts and proven technologies for recovery of heavy oil spills from sea water in cold and ice prone ocean environments.

The long-term outcome of the project will include specialized vessels with the required detection, storage, and spill removal systems, tested and proven in the real life conditions.

Project partners with C-CORE include Elastec, Eastern Canada Response Corporation Ltd. (ECRC), and InnovatechNL.

University of Toronto

A further $400,000 will go to a University of Toronto project that will develop a sorbent-based direct oil collector (called In-Situ Foam Filtration System or ISFFS) for use in oil spills.  This system will be capable of directly reclaiming the dissolved, emulsified, dispersed, and free oil from marine spill sites.  To meet this objective, the development of advanced functional foams (sorbents), implementing a bench-top system, and design and optimization of in-situ filtration process as a proof-of-concept will be undertaken.

The ISFF will directly collect the oil from the spill site by pumping through oil sorbent bed, which serves as the filtration media.  For this type of foam, there is no need for high oil-sorption capacity thus, functionalizing the foam with toxic and expensive elements can be avoided along with minimizing material costs.  Moreover, the in-situ filtration will make the oil sorption process continuous, simplifies oil collection, making oil spill response quicker and more cost effective.

Project partners include Tetra Tech, Polaris Applied Sciences Inc., Dr. Foam Canada, Gracious Living Innovations Inc., and ShawCor Ltd.

University of Alberta’s Advanced Water Research Lab

The OSRS program will be contributing $600,000 towards a $1.65 million project be undertaken at the University of Alberta.  The project involves the development of an on-board membrane based hybrid oil/water separation system.  If successfully developed, the system will significantly increase the capacity of recovery vessels that physically collect oil spilled at sea, thereby reducing the cost and spill response time for cleanup.  The technology can be directly and easily incorporated into existing rapid deployment spill clean-up systems mounted on ships or barges.  It would be ready to commercialize for manufacturers of existing oil spill clean-up tankers, making the research easy to implement for large or small-scale spills and for potential use in future high-risk areas of development.

BC Research Inc.

Finally, the federal OSRS program committed $925,000 to BC Research Inc., a company with a broad experience in chemical product development, to further develop a hybrid spill-treating agent (STA) that will help slow or prevent the spread of an oil slick on water.

If the R&D project is successful, a hybrid STA will be commercially available that can be used to combat marine oil spills at large scale.  The hybrid STA would have both gelling and herding properties, to prevent or slow down the spreading of an oil slick by rendering it into a thickened (gelled) state, as well as to use it as a herding agent, to facilitate either controlled burn or skimming operations.

Current oil recovery rates for spills on water are estimated to be in the range of 10-20%.  With current STAs, there are few options to prevent or slow down weathering processes, including spreading and dispersion. Delaying the spreading and weathering process would potentially facilitate cleanup and improve the degree/rate of oil removed.

Project partners include NORAM Engineers and Constructors and the University of British Columbia.

Volunteers cleaning Ambleside Beach in West Vancouver, 1973. (Source: John Denniston)