Posts

What are the most common HazMat threats for first responders?

by Steven Pike, Argon Electronics

The unintentional release of toxic chemicals can pose a wide range of physical, health and environmental hazards. And when it comes to the storage, handling or transport of hazardous materials (HazMat), safety is paramount.

The US Environmental Protection Agency (U.S. EPA) defines HazMat as any substance that is potentially harmful to human health or the environment. 

While there are a multitude of precautions that industries will take to stay safe, in the event of accidental spillage due to a road traffic accident or as the result of an industrial incident, highly trained HazMat crews will be called on to mitigate the threat.

In this article, we explore eight of the most common hazardous materials that first responders are likely to encounter in the event of an industrial accident or road transport incident.

1) Carbon Dioxide

Refrigerated carbon dioxide is a colorless, odorless, non-flammable gas used to chill or freeze food products as part of the process of transport to market.

Although non-toxic, when carbon dioxide displaces oxygen in confined spaces the carbon dioxide vapors can cause headache, nausea, dizziness or asphyxiation. And when carbon dioxide comes into contact with skin it can also cause severe burns.

When responding to incidents where C02 is stored, firefighters need to be alert to the possibility of leakages. A low oxygen meter should be used to determine that an area is safe for occupancy.

2) Chlorine

Chlorine is a key component in the production of key industrial and consumer products including the vast majority of pharmaceutical production and virtually all crop protection chemicals.

It is a highly reactive and volatile substance, particularly when in the presence of heat, and is considered to be among the most dangerous of hazardous materials.

Chlorine is classified as both a Toxic Inhalation Hazard (TIH) and a Poison Inhalation Hazard (PIH).

3) Fireworks

Both the transport and storage of consumer fireworks pose a high fire risk. In the United Kingdom (UK), the physical movement (transfer) of explosives from one place to another (excluding those moved within a site) requires a Recipient Competent Authority (RCA) document. 

According to the UK’s Health and Safety Executive (HSE) a license is required from an appropriate licensing authority in order to be able to store explosives, however depending on their hazard type certain quantities of explosives can be kept for a short time without the need for a license. 

In the US, the Consumer Product Safety Commission (CPSC) has issued mandatory safety regulations for fireworks devices that are regulated under the Federal Hazardous Substances Act.

4) Gasoline

Typical gasoline contains approximately 150 different chemicals including benzene, toluene, ethylbenzene and xylene.

The highly flammable nature of gasoline, the ease with which it evaporates and its explosive potential in air, makes it a high exposure risk. Gasoline exposure can occur through the breathing of gasoline vapours, via the drinking of contaminated water or by coming into contact with contaminated soil.

Gasoline should only be stored in approved containers and must not be handled near any ignition source.

5) Argon

A refrigerated liquid, Argon is most commonly used in the production of fluorescent light bulbs and in welding.

Argon is classed as neither flammable nor toxic, however it can cause significant tissue damage if it comes into contact with skin and it can be extremely harmful if inhaled. To avoid sudden releases Argon is transported in upright cylinders.

6) Sulfuric Acid

Sulfuric acid (also known as “battery acid”, “hydrgen sulfate” and “oil of vitriol”) is one of the most important compounds in the chemical industry. The annual production of sulfuric acid worldwide has been predicted to hit 260 million tonnes by the end of 2018. 

Sulfuric acid is used widely in the production of phosphate fertilizers, metal processing, lead-based batteries, fiber production and chemical manufacturing (including paints, pigments, dyes and synthetic detergents.)

It is a highly corrosive substance which is destructive to skin, eyes, teeth and lungs. Severe exposure can be fatal.

7) Propylene

Propylene is a volatile, flammable gas used as a crucial product in the petrochemical, packaging and plastics industries.

It is often used in the place of propane in high-velocity oxygen fuel (HVOF) processes. Propylene gas poses a fire hazard when it is handled in the vicinity of any equipment capable of causing ignition.

8) Liquefied Petroleum Gas (LPG)

Comprising a combination of propane and butane, LPG is commonly used as both a fuel (to heat vehicles and appliances) and as a refrigerant. Its mixture of hydrocarbon gases poses a major fire risk which means it must be stored in pressured vessels.

Toxic chemicals can pose a wide range of potential health and physical hazards to those employees operating within industrial plants and to the personnel charged with handling or transporting these substances. And as such they are heavily regulated.

In the rare case of accidental release, the knowledge of HazMat crews can provide life-saving assistance in identifying the threat, containing the area and mitigating the effects of the incident. 

This article was first published on the Argon Electronics website.

___________________________________

About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators.
He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

New Technology on Track to Vitalize Confined Space HazMat Training

by Steven Pike , Argon Electronics

Teams operating in confined spaces within hazardous industrial buildings or process facilities understand all too well the importance of adhering to strict health and safety regulations.

The hazards that confined spaces present can be physical or atmospheric in nature – from the risks of asphyxiation or entrapment to exposure to extremes of temperature or the release of toxic chemicals.

Confined Space Entry

According to the Census of Fatal Occupational Injuries, on average two people die in the US every day as the result of incidents that take place within confined spaces.

In many cases too, it is not just the victim who is at risk, but the rescuer or first responder who may be unaware of the hazard they are about to encounter.

Directives such as the Occupational Safety and Health Administration (OSHA), the Control of Major Accident Hazards Regulations (COMAH), the Dangerous Substances and Explosive Atmospheres Regulations (DSEAR), Atex and many others all have a pivotal role to play in ensuring safety.

But despite the emphasis on prevention, any potentially harmful chemical release, and specifically one that occurs within the context of a confined space, will require personnel who are skilled and confident to handle a variety of complex challenges.

With these challenges in mind, a new app-based multigas simulator technology, specifically designed for use in confined space settings, is scheduled for release in late summer 2018.

And the new system looks set to deliver an enhanced level of realism for industrial HazMat training scenarios.

Applying CWA Technology to Industrial HazMat Training

The use of simulation technology for chemical warfare agent (CWA) training is already well established, with intelligent, computer-based training aids such as Argon Electronics’ PlumeSIM and PlumeSIM-SMART systems currently in use by military forces around the world.

The launch of PlumeSIM in 2008 provided CWA and CBRN instructors with a simulation package that enabled them to use their laptops, in conjunction with a map or images, to plan a diverse range of field and table-top exercises.

The type of substance, whether a single or multiple source and an array of environmental conditions (such as wind direction and speed) could all be easily configured. And the innovative technology enabled whole exercises to be recorded for after action review (AAR) and future contingency planning.

In 2016 came the introduction of PlumeSIM-SMART – which offered similar capabilities to PlumeSIM but replaced the use of simulator devices in the field with the simplicity of a mobile phone.

The ability to transform a mobile phone into a look-alike gas detector was to prove especially practical (and budget-friendly) for high-hazard industrial organizations and municipal responders.

And using mobiles offered some additional and unexpected benefits in that it enabled field exercises to take place in any location.

Realistic Multigas Training

The newest addition to Argon’s simulation technology portfolio has been devised for specific use within the training environs of confined spaces and multi-level buildings.

The device will offer HazMat instructors the flexibility to simulate specific levels and concentrations of gases, whether these be in the form of a gas escape or a dangerous device (or devices) concealed within a building.

It will also be highly configurable to enable instructors to select the use of either single or multigas sensors within their training scenarios.

The hardware will be identical to that currently available for CWA training and toxic industrial response training. It has also been configured to interact with existing hand-held gas detection simulators, such as PlumeSIM-SMART, to provide an enhanced level of realism and a more focused training experience.

Simulation sources will be able to be set to emit a signal that replicates the conditions of a particular substance, a low level or oxygen or an explosive atmosphere.

And as students move around the training environment, their display readings will adjust accordingly to simulate an event such as a breached alarm.

The latest detector also promises to overcome the issues posed by communications interference within buildings where GPS technology can often be limited.

Working in confined spaces within industrial complexes can present a daunting array of hazards, both for the staff operating within the facilities and for the emergency teams charged with first response.

The continued development of simulator technology can help to address these challenges by providing realistic, hands-on training opportunities that replicate real-life conditions.

This article was originally published in the Argon Electronics website.

_______________________

About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a world leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators.

In use worldwide, Argon simulators have applications for training and preparedness within civil response, the military, EoD, unconventional terrorism / accidental release, and international treaty verification, with a growing presence in the nuclear energy generation and education markets. We have been granted a number of international patents in this field.

Events

WCSS Spill Responder Series Training – Spill Responder 101

This course is a pre-requisite for the remaining Spill Responder Series

ONLINE TRAINING    $110.00 +GST (Preview)

For technical issues relating to the online course, please contact  TECHNICAL SUPPORT and include a screenshot so that a diagnosis may take place as soon as possible.

 Self-study: The hard copy manual is $65.00 + GST per copy. To purchase, please contact Leona Boisselle at 587.393.9620

Classroom Courses:  MARCH 27, 2019

The Alberta Energy Regulator’s Directive 071 requires that all licensees have the responsibility to ensure that they are fully prepared and capable of responding to any level of emergency such as oil spills. This one-day awareness level classroom course has been designed to meet the AER’s Directive 071 minimum recommended level of spill response training for anyone who may have to respond to an oil spill, as well as for members of WCSS who may have missed an annual Oil Spill Cooperative  training exercise. The course provides spill responders with basic practical information that will help them to respond quickly and appropriately to a liquid hydrocarbon spill on both land and water. It consists of the following chapters, each with its own quiz:

  • Spill prevention and preparedness, regulatory reporting requirements and basic ICS
  • Field safety precautions
  • Initial spill response
  • Containment and recovery techniques

Instructors share their real-life experiences and provide many practical examples in addition to answering questions.

To register, call 587-393-9620