Posts

How can a multi-gas detection simulator enhance emergency response?

Written by Steven Pike , Argon Electronics

The growth in global industry and manufacturing, together with the ever-present risk of terrorist threat, means emergency personnel are increasingly being required to respond to incidents where there is risk of exposure to explosive atmospheres, low or enriched oxygen, or the presence of lethal toxic vapours.

For response crews arriving on scene there are two essential questions to consider. Is the air safe enough to breathe? And are there any specific toxic gases present?

Gas detection is fundamental to emergency response – and multi-gas detectors are the ideal tools for serving the majority of first responders’ gas detection needs.

Ensuring that crews have access to the right air-monitoring equipment, and that they’re trained in how to use it, is essential for enabling them to make confident decisions in complex scenarios.

In this blog post we provide an overview of the most common types of air-monitoring equipment. And we explore how gas detection simulators can aid in the effectiveness of first response training. 

Portable multi-gas detectors come in a variety of styles and configurations, some with the ability to detect up to six gases at a time. So let’s first consider the four most common types:

Catalytic combustion sensors – in which a heated wire is used to detect a wide variety of flammable gases from natural gas leaks to gasoline spills. In catalytic combustion, power is applied to a special wire coil, in much the same way as a traditional light bulb. Any combustible gas that is exposed to the sensor will react on the wire surface and produce a display reading.

Electrochemical toxic gas sensors – which are used to detect the presence of toxic hazards. An electrochemical sensor is similar in design to a small battery except that the chemical component that is required to produce the electric current is not present in the sensor cell. As the target gas diffuses into the membrane of the sensor, this reacts with chemicals on the sensing electrode to produce an electrical current.

Infrared detectors – commonly used to detect gases that are less reactive and therefore cannot be detected using typical electrochemical cells (such as CO2 or hydrocarbons). Instead of relying on a chemical reaction, infrared sensors determine the amount of gas present by measuring how much light the specific gas absorbs.

Photoionization detectors (PID) – which are used to detect volatile industrial compounds (VOCs) such as methane which can be present during industrial spills. PIDs rely on the specific chemical properties of the VOCs, but instead of absorbing light they use a light source in the UV spectrum to ionize electrons off gas molecules.

Realistic multi-gas detection training

The last decade has seen an increasing demand for advanced training tools to create the highest levels of realism, to reinforce instruction and to enhance student learning.

The use of intelligent simulation technology for chemical warfare agent training is well established. And now that same pool of knowledge and expertise has been applied to training in multi-gas detection.

One such example is Argon Electronics’ Multi-Gas SIM – an App-based simulator that provides instructors with the ability to set up complex multi-gas training scenarios using an android phone.

The simulator is highly configurable which means instructors can set the number of gas sensors they they want their students to view and they can select the type of sensor (be it infrared, electrochemical, PID etc).

They can also program the alarm settings in accordance with the operational detectors in use – so as students move around the training environment, their display readings will adjust to simulate events such as a breached alarm.

The option of an instructor remote means that trainers can remotely monitor student readings and activity, to further stimulate discussion and reinforce knowledge.

For those wanting to implement large-scale releases, the multi-gas simulator can also be used with Argon’s PlumeSM system to provide an enhanced level of realism and a more focused training experience.

Realism, repeatability, safety and efficiency are all key to effective HazMat training.

Simulator detectors tools such as Argon’s Multi-Gas SIM promise to play an invaluable role in aiding trainees’ understanding of gas detection to ensure the right decisions are made, however challenging the scenario.

About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

What are the most common HazMat threats for first responders?

by Steven Pike, Argon Electronics

The unintentional release of toxic chemicals can pose a wide range of physical, health and environmental hazards. And when it comes to the storage, handling or transport of hazardous materials (HazMat), safety is paramount.

The US Environmental Protection Agency (U.S. EPA) defines HazMat as any substance that is potentially harmful to human health or the environment. 

While there are a multitude of precautions that industries will take to stay safe, in the event of accidental spillage due to a road traffic accident or as the result of an industrial incident, highly trained HazMat crews will be called on to mitigate the threat.

In this article, we explore eight of the most common hazardous materials that first responders are likely to encounter in the event of an industrial accident or road transport incident.

1) Carbon Dioxide

Refrigerated carbon dioxide is a colorless, odorless, non-flammable gas used to chill or freeze food products as part of the process of transport to market.

Although non-toxic, when carbon dioxide displaces oxygen in confined spaces the carbon dioxide vapors can cause headache, nausea, dizziness or asphyxiation. And when carbon dioxide comes into contact with skin it can also cause severe burns.

When responding to incidents where C02 is stored, firefighters need to be alert to the possibility of leakages. A low oxygen meter should be used to determine that an area is safe for occupancy.

2) Chlorine

Chlorine is a key component in the production of key industrial and consumer products including the vast majority of pharmaceutical production and virtually all crop protection chemicals.

It is a highly reactive and volatile substance, particularly when in the presence of heat, and is considered to be among the most dangerous of hazardous materials.

Chlorine is classified as both a Toxic Inhalation Hazard (TIH) and a Poison Inhalation Hazard (PIH).

3) Fireworks

Both the transport and storage of consumer fireworks pose a high fire risk. In the United Kingdom (UK), the physical movement (transfer) of explosives from one place to another (excluding those moved within a site) requires a Recipient Competent Authority (RCA) document. 

According to the UK’s Health and Safety Executive (HSE) a license is required from an appropriate licensing authority in order to be able to store explosives, however depending on their hazard type certain quantities of explosives can be kept for a short time without the need for a license. 

In the US, the Consumer Product Safety Commission (CPSC) has issued mandatory safety regulations for fireworks devices that are regulated under the Federal Hazardous Substances Act.

4) Gasoline

Typical gasoline contains approximately 150 different chemicals including benzene, toluene, ethylbenzene and xylene.

The highly flammable nature of gasoline, the ease with which it evaporates and its explosive potential in air, makes it a high exposure risk. Gasoline exposure can occur through the breathing of gasoline vapours, via the drinking of contaminated water or by coming into contact with contaminated soil.

Gasoline should only be stored in approved containers and must not be handled near any ignition source.

5) Argon

A refrigerated liquid, Argon is most commonly used in the production of fluorescent light bulbs and in welding.

Argon is classed as neither flammable nor toxic, however it can cause significant tissue damage if it comes into contact with skin and it can be extremely harmful if inhaled. To avoid sudden releases Argon is transported in upright cylinders.

6) Sulfuric Acid

Sulfuric acid (also known as “battery acid”, “hydrgen sulfate” and “oil of vitriol”) is one of the most important compounds in the chemical industry. The annual production of sulfuric acid worldwide has been predicted to hit 260 million tonnes by the end of 2018. 

Sulfuric acid is used widely in the production of phosphate fertilizers, metal processing, lead-based batteries, fiber production and chemical manufacturing (including paints, pigments, dyes and synthetic detergents.)

It is a highly corrosive substance which is destructive to skin, eyes, teeth and lungs. Severe exposure can be fatal.

7) Propylene

Propylene is a volatile, flammable gas used as a crucial product in the petrochemical, packaging and plastics industries.

It is often used in the place of propane in high-velocity oxygen fuel (HVOF) processes. Propylene gas poses a fire hazard when it is handled in the vicinity of any equipment capable of causing ignition.

8) Liquefied Petroleum Gas (LPG)

Comprising a combination of propane and butane, LPG is commonly used as both a fuel (to heat vehicles and appliances) and as a refrigerant. Its mixture of hydrocarbon gases poses a major fire risk which means it must be stored in pressured vessels.

Toxic chemicals can pose a wide range of potential health and physical hazards to those employees operating within industrial plants and to the personnel charged with handling or transporting these substances. And as such they are heavily regulated.

In the rare case of accidental release, the knowledge of HazMat crews can provide life-saving assistance in identifying the threat, containing the area and mitigating the effects of the incident. 

This article was first published on the Argon Electronics website.

___________________________________

About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators.
He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

Market Report on VOC Detectors

VOC Detector Market

QY Research recently published the Global Market Study VOC Detector Market Provide Forecast Report 2018 – 2025.  The report presents a detailed analysis of the VOC Detector market which researched industry situations, market Size, growth and demands, VOC Detector market outlook, business strategies utilized, competitive analysis by VOC Detector Market Players, Deployment Models, Opportunities, Future Roadmap, Value Chain, and Major Player Profiles. The report also presents forecasts for VOC Detector investments from 2018 till 2025.

United States is the largest Manufaturer of VOC Detector Market and consumption region in the world, Europe also play important roles in global VOC Detector market while China is fastest growing region. The 126 page VOC Detector report provides tables and figures and analysis the VOC Detector market. The report gives a visual, one-stop breakdown of the leading products, submarkets and market leader’s market revenue forecast as well as analysis and prediction of the VOC Detector market to 2025.

Geographically, this report splits the global market into several key Regions, with sales (K Units), revenue (Million USD), market share and growth rate of VOC Detector for these regions, from 2013 to 2025 (forecast), covering United States, China, Europe, Japan, Southeast Asia, and India.

The report provides an analysis of the global VOC Detector market competition by top manufacturers/players, with VOC Detector sales volume, Price (USD/Unit), revenue (Million USD) and market share for each manufacturer/player.  The top players include the following: REA Systems; Ion Science; Thermo Fisher; Skyeaglee; Omega; and E Instruments.

The report provides an overview of the global market on the basis of product.  This report displays the production, revenue, price, market share and growth rate of each type, primarily split into the following types of detectors:
PID and Metal-oxide Semiconductor.   The report also breaks down the global market based on application as follows:  Environmental Site Surveying; Industrial Hygiene; and HazMat/Homeland Security.

RAE Systems Gas Detector

Global Emergency Spill Response Market – Trends and Forecast

Analytical Research Cognizance recently issued a report on the Global Emergency Spill Response Market.  The report focuses on detailed segmentations of the market, combined with the qualitative and quantitative analysis of each and every aspect of the classification based on type, spill material, spill environment, vertical, and geography.

The report provides a very detailed analysis of the market based on type, the emergency spill response market has been classified into products and services.  The products include booms, skimmers, dispersants and dispersant products, in-situ burning products, sorbents, transfer products, radio communication products, and vacuum products.

The report has a services section that provides a forecast on the future growth of the services sector.  The services segment has been classified into product rental services, waste management services, manpower training services, transportation and disposal services, spill response drill and exercise services, tracking and surveillance services, risk assessments and analysis services, and other services.

Scope of the Report:

This report studies the Emergency Spill Response market status and outlook of global and major regions, from angles of players, countries, product types and end industries; this report analyzes the top players in global market, and splits the Emergency Spill Response market by product type and applications/end industries.

The market is expected to have significant growth in the coming years owing to stringent environmental regulations across the world to reduce the environmental pollution from spills.

Skimmers held the largest market size, in terms of product, primarily due to the increased demand for mechanical recovery methods for spill recovery.  Unlike other methods, the mechanical recovery methods remove the spill material from the spill environment.  Thus, skimmers are more effective in mitigating the environmental impact of the spills.

The global Emergency Spill Response market is valued at 2,530 million USD in 2017 and is expected to reach 3,410 million USD by the end of 2023, growing at a CAGR of 5.1% between 2017 and 2023.

The Asia-Pacific will occupy for more market share in following years, especially in China, fast growing India, and Southeast Asia regions.

North America, especially The United States, will still play an important role which cannot be ignored. Any changes from the United States might affect the development trend of Emergency Spill Response.

 

Oil Spill Response using Real Time Tracking and GIS Technology

A new project taking place of the coastline of St. John’s Newfoundland aims to reshape marine oil spill response through real-time tracking and GIS technology.

Integrated Informatics Inc., headquartered in Houston,Texas, recently received funding from the Newfoundland and Labrador Innovation Council to undertake a project that will aim to reshape the way in which asset and personnel tracking are handled for Marine Oil Spill Response in Newfoundland and Labrador.

In November 2008, the Odyssey, a British-owned oil tanker, broke in two, caught fire and sank in heavy seas about 900 miles east of Newfoundland, spilling about a million barrels of oil.

The project will include the development of a new Tracking Data Management System to be deployed to Marine Emergency Response Industry users.

A spokesperson for Integrated Informatics, Sharon Janes, stated in a press release, “It is not uncommon to still see paper maps and documents heavily relied upon in Emergency Response Plans.  The problem with these resources is that they do not present information that is as complete and current as possible within an emergency situation. This is what we are excited to help change – putting this data into the hands of responders as quickly and efficiently as possible.”

The Tracking Data Management System will be completed by August 2019, consisting of a suite of applications for asset and personnel tracking and a data management system to streamline the acquisition of data necessary for emergency preparedness exercises and active response within command centers.  These products will utilize Geographic Information System (GIS) technology – including rich mobile and web interfaces – as well as a robust data analytics and reporting dashboard.

Ms. Janes also stated, “By accessing asset and personnel tracking data through mobile devices and the web, first responders will be able to more efficiently interpret data, analyze trends, and plan response in real-time. Because this system rests on such a familiar platform [mobile, web], those with technical and non-technical backgrounds alike will be able to implement it into their workflows with ease.”

The planned system is one that has long been of interest within the Emergency Response and Natural Resources sectors of the Province – especially as organizations explore new, more challenging environments alongside their own endeavors to align processes and practices with innovative digital technologies.

Integrated Informatics Inc. is a consultancy for Geographic Information System implementation and development. Founded in 2002, Integrated Informatics has offices in Calgary, Alberta, Houston, Texas, and St. John’s, Newfoundland.

First ship launched of Trans Mountain spill response fleet

As reported by jwnenergy.com, the first of 43 new spill response vessels being built to support the Trans Mountain Pipeline expansion was launched recently in Prince Rupert, B.C.

The 26-foot Sentinel 30 workboat and landing craft was built for Western Canada Marine Response Corp. (WCMRC).  WCMRC is the Transport Canada-certified marine spill response organization for Canada’s West Coast. Its mandate under the Canada Shipping Act is to be prepared to respond to marine oil spills along all 27,000 km of British Columbia’s coastline, and to mitigate the impact when a spill occurs. This includes the protection of wildlife, economic and environmental sensitivities, and the safety of both the responders and the public.

The Sentinel 30 Spill Response Vessel built by WCMRC

The spill response vessels are part of an investment of $150 million committed after Kinder Morgan made its final investment decision on the pipeline in June 2017, British Columbia’s largest-ever expansion of spill response personnel and equipment.

“Workboats are the backbone of a response. These support vessels deliver equipment and personnel to a response, tow boom as part of a sweep system, deploy skimmers and can assist with waste removal,” WCMRC said in a statement.

“To perform these tasks, the new Sentinel 30 is powered by twin 150 HP counter-rotating Yamaha outboards and can travel at up to 35 knots.”

The Sentinel 30 will undergo spill response trials in Prince Rupert and ultimately be transitioned to the new 24/7 response base in Saanich on Vancouver Island.

In total, WCMRC is building 40 new vessels as part of the Trans Mountain pipeline spill response fleet. Other new vessel builds underway at WCMRC shipyard include purpose-built skimming vesselsCoastal Response Vesselslanding craft and response barges.

The Trans Mountain spill response enhancements also include six new response bases and about 135 new personnel. These new resources will be located along shipping lanes in the Salish Sea, with about 70 of the new WCMRC employees and most new vessels located at bases on Vancouver Island, according to Kinder Morgan.  Following the enhancements, there will be over 80 vessels in the fleet.

All new personnel, facilities and equipment will be in place several months before the first oil tankers associated with the expansion begin calling at Burnaby’s Westridge Marine Terminal in Burrard Inlet, the company said when the enhancements were announced last June.

U.S. DOD Rapid Innovation Fund for Innovative Technology in Emergency Response Tools

The United States Department of Defence (U.S. DoD) Rapid Innovation Fund facilitates the rapid insertion of innovative technologies into military systems or programs that meet critical national security needs. DoD seeks mature prototypes for final development, testing, evaluation, and integration. These opportunities are advertised under NAICS codes 541714 and 541715. Awardees may receive up to $3 million in funding and will have up to two years to perform the work. The two phases of source selection are (1) white paper submission and (2) invited proposal submission. The window of opportunity for submitting white papers expires on April 12, 2018 (due by 3:00 PM ET).
Among the numerous R&D opportunities described in the BAA are topics relevant to the development of environmental monitoring and emergency response tools:

  • Handheld automated post-blast explosive analysis device (USDR&E-18-BAA-RIF-RRTO-0001). Handheld automated detection and characterization of explosive residue collected on-scene after an explosion.
  • Handheld networked radiation detection, indication and computation (RADIAC) (DTRA-17-BAA-RIF-0004). A lighter, more compact system for integration into CBBNE situational awareness software architecture of Mobile Field Kit and Tactical Assault Kit.
  • 3-D scene data fusion for rapid radiation mapping/characterization (DTRA-17-BAA-RIF-0005).
  • Immediate decontamination (CBD-18-BAA-RIF-0001). A spray-on decontaminant that can be applied in a single step in ~15 minutes on hardened military equipment.
  • Hyperspectral aerial cueing for chemical, biological, radiological, nuclear and explosive (CBRNE) mobile operations (PACOM-18-BAA-RIF-0001). Real-time detection via drone.
  • Mobile automated object identification and text translation for lab equipment (DTRA-17-BAA-RIF-0003). A tool to help users recognize equipment, chemicals, and potentially hazardous material in real time.

https://www.fbo.gov/spg/ODA/WHS/REF/HQ0034-18-BAA-RIF-0001A/listing.html
[NOTE: This BAA was also issued as HQ0034-18-BAA-RIF-0001B.]

U.S. System Assessment and Validation for Emergency Responders Program

The U.S. Department of Homeland Security (DHS) established the System Assessment and Validation for Emergency Responders (SAVER) Program to assist emergency responders making procurement decisions. Located within the DHS Science and Technology Directorate (S&T), the SAVER Program conducts objective assessments and validations on commercial equipment and systems, and provides those results along with other relevant equipment information to the emergency responder community. For more information, read the SAVER Program Fact Sheet.

The SAVER Program mission includes:

  • Conducting impartial, practitioner‑relevant, operationally oriented assessments and validations of emergency response equipment; and,
  • Providing information, in the form of knowledge products, that enables decision‑makers and responders to better select, procure, use, and maintain emergency response equipment.

Addressing Technologies

SAVER contains more than 1,000 assessments of equipment that falls within 21 different categories on the DHS Authorized Equipment List (AEL). Categories include:

  • Search and Rescue
  • Information Technology
  • CBRNE Detection
  • Personal Protective Equipment
  • Decontamination
  • Surveillance
  • Explosive Countermeasures

This information is shared nationally with the responder community, providing a cost-saving resource to DHS and other federal, state, and local agencies. Additionally, more than 20 different programs offer grants to purchase equipment on the AEL List.

Objective Assessments and Validations

SAVER is supported by a network of qualified technical agents who play a critical role in providing impartial evaluations and by helping to ensure these evaluations address real-world operational requirements. Participating organizations include the Space and Naval Warfare Systems Center Atlantic, DHS S&T’s National Urban Security Technology Laboratory, as well as emergency response practitioners, law enforcement officers, firefighters, paramedics, and emergency managers, all of whom help to ensure these activities address real-world operational requirements.

Based on their assessments, technical agents produce documents, including product lists, reports, plans, rating charts, handbooks, and guides that describe the equipment, their capabilities, features, and potential applications. This provides first responders with a well-rounded picture to help inform procurement decisions.

SAVER Documents and Outreach

Partnerships

Biodetection Resources for First Responders

National Institute of Standards and Technology

Lesson Learned Information Sharing – Knowledge Base

Inter Agency Board – Standardized Equipment List

JUSTNet: The Website of the National Law Enforcement and Corrections Technology Center

Evolution of Emergency Management

by Lee Spencer, Spencer Emergency Management Consulting

You would have to be living under a rock to have not heard the resounding thud of the Ontario Auditor General’s report on the state of emergency management in Canada’s most populated province hitting the desks of the emergency management community in Canada (report) . I for one was not shocked by the findings and believe most jurisdictions in Canada would see similar criticism if subject to an OAG review.

For generations, provincial level emergency management has been an after thought.  Historically staffed by second career fire/police/military retirees who were expected to be seen and not heard.  These legacy EMOs were counted on to create order in the otherwise chaotic response phase of large scale disaster and otherwise quickly to be ignored again once the situation was restored and recovery programs began to hand out government grants.

After 9/11 it was clear to elected officials that the public had an expectation of the EMO cavalry galloping in to defeat any hazard, risk or terrorist.  But the costs and the growth that would be needed to meet that expectation could not compete with the schools, hospitals, roads and bridges built to ensure tangible things could be pointed to when an election rolled around.  After all the last thing most governments want claim at election time is they added more civil servants.

So in this era of increased public expectation, EMOs were given very little new resources to modernize and adapt to the new reality.  Provincial EMOs were left to the task of preparedness and response in the modern context with resources more suited to the National Survival primordial ooze from which provincial EMOs emerged.

I am hopeful that the public shaming of our most densely populated economic engine, will lead to a national discussion of the investment required to truly meet the realities and expectations of modern emergency management.There are already several emerging national strategies that will aid in this effort, Canada’s emerging Broadband Public Safety Network and the expanding National Public Alerting Systems are modern capabilities that will go a long way to enhance capacity at even the most modest EMO.

We are also starting to see an expansion in post secondary degrees and diplomas which will lead to firmly establishing emergency management as a profession in Canada.  These emerging professionals will eventually take over the leadership roles from folks like me (second career), bringing with them the education and experience to combine the historical EMOs with modern thinking.

I know my former colleagues in the EMO’s across Canada are shifting uncomfortably at there desks at the moment waiting for their own leaders to ask how they compare to Ontario.  It would seem to me that if your not uncomfortable you just don’t get it.

_____________

About the Author

 Lee Spencer is founder and President of Spencer Emergency Management Consulting.  The company is focused on the strategic integration of emergency management concepts towards an outcome of resilience within a community, business or government.

 

This article was first published Spencer Emergency Management Consulting e-blog site.

FirstOnSite Restoration opens new Quebec branch

FirstOnSite Restoration, Canada’s leading independent disaster restoration services provider, has bolstered its Quebec offering with the opening of a new branch in Ste-Agathe, QC.  The branch will serve the restoration, remediation and reconstruction needs of both existing and new customers in the Laurentians region (including Mont Tremblant, Ste-Agathe and Saint-Sauveur) and complement service provided by the current branches in Montréal and Québec City.

This new branch is led by Senior Project Manager and Acting Branch Manager, Olivier Bertrand. Olivier, who resides in the Laurentians, originally joined FirstOnSite in 2010, and has had a successful history of entrepreneurship, business management and restoration industry expertise. He has more than 10-years experience in disaster recovery and restoration, and has worked on multimillion-dollar commercial restoration and reconstruction projects as well as condominiums and residential rebuilds. Olivier has also owned and operated his own construction firm, where he specialized in new build construction.

“Olivier’s experience in leadership, management and restoration uniquely qualifies him to launch and manage this new FirstOnSite location,” said Barry J. Ross, Executive Vice President, FirstOnSite Restoration.

Supporting Olivier is Project Manager, Eric Archambault, a 30-year veteran of the restoration industry, and an expert in loss evaluation and restoration of major residential and commercial properties. Eric is also a resident of the Laurentians.

The new branch will be reinforced by FirstOnSite’s flagship Montréal/Dorval branch – the largest full service commercial and residential restoration provider in the province, and is the next step of the company’s expansion plans in Quebec.

“The Ste-Agathe branch brings a dedicated and full-time staff to the region and reinforces our commitment to providing superior customer service,” said Ross. “It will help FirstOnSite extend the coverage we offer customers through our existing locations.”

About FirstOnSite Restoration

FirstOnSite Restoration Limited is an independent Canadian disaster restoration services provider, providing remediation, restoration and reconstruction services nationwide, and for the U.S. large loss and commercial market. With approximately 1,000 employees, more than 35 locations, 24/7 emergency service and a commitment to customer service, FirstOnSite  serves the residential, commercial and industrial sectors.

In May 2016, FirstOnSite joined forces with U.S.-based Interstate Restoration, expanding its resource base, and extending its customer service offering and collectively becoming the second largest restoration service provider in North America.

Events

Nothing Found

Sorry, no posts matched your criteria