Posts

How can a multi-gas detection simulator enhance emergency response?

Written by Steven Pike , Argon Electronics

The growth in global industry and manufacturing, together with the ever-present risk of terrorist threat, means emergency personnel are increasingly being required to respond to incidents where there is risk of exposure to explosive atmospheres, low or enriched oxygen, or the presence of lethal toxic vapours.

For response crews arriving on scene there are two essential questions to consider. Is the air safe enough to breathe? And are there any specific toxic gases present?

Gas detection is fundamental to emergency response – and multi-gas detectors are the ideal tools for serving the majority of first responders’ gas detection needs.

Ensuring that crews have access to the right air-monitoring equipment, and that they’re trained in how to use it, is essential for enabling them to make confident decisions in complex scenarios.

In this blog post we provide an overview of the most common types of air-monitoring equipment. And we explore how gas detection simulators can aid in the effectiveness of first response training. 

Portable multi-gas detectors come in a variety of styles and configurations, some with the ability to detect up to six gases at a time. So let’s first consider the four most common types:

Catalytic combustion sensors – in which a heated wire is used to detect a wide variety of flammable gases from natural gas leaks to gasoline spills. In catalytic combustion, power is applied to a special wire coil, in much the same way as a traditional light bulb. Any combustible gas that is exposed to the sensor will react on the wire surface and produce a display reading.

Electrochemical toxic gas sensors – which are used to detect the presence of toxic hazards. An electrochemical sensor is similar in design to a small battery except that the chemical component that is required to produce the electric current is not present in the sensor cell. As the target gas diffuses into the membrane of the sensor, this reacts with chemicals on the sensing electrode to produce an electrical current.

Infrared detectors – commonly used to detect gases that are less reactive and therefore cannot be detected using typical electrochemical cells (such as CO2 or hydrocarbons). Instead of relying on a chemical reaction, infrared sensors determine the amount of gas present by measuring how much light the specific gas absorbs.

Photoionization detectors (PID) – which are used to detect volatile industrial compounds (VOCs) such as methane which can be present during industrial spills. PIDs rely on the specific chemical properties of the VOCs, but instead of absorbing light they use a light source in the UV spectrum to ionize electrons off gas molecules.

Realistic multi-gas detection training

The last decade has seen an increasing demand for advanced training tools to create the highest levels of realism, to reinforce instruction and to enhance student learning.

The use of intelligent simulation technology for chemical warfare agent training is well established. And now that same pool of knowledge and expertise has been applied to training in multi-gas detection.

One such example is Argon Electronics’ Multi-Gas SIM – an App-based simulator that provides instructors with the ability to set up complex multi-gas training scenarios using an android phone.

The simulator is highly configurable which means instructors can set the number of gas sensors they they want their students to view and they can select the type of sensor (be it infrared, electrochemical, PID etc).

They can also program the alarm settings in accordance with the operational detectors in use – so as students move around the training environment, their display readings will adjust to simulate events such as a breached alarm.

The option of an instructor remote means that trainers can remotely monitor student readings and activity, to further stimulate discussion and reinforce knowledge.

For those wanting to implement large-scale releases, the multi-gas simulator can also be used with Argon’s PlumeSM system to provide an enhanced level of realism and a more focused training experience.

Realism, repeatability, safety and efficiency are all key to effective HazMat training.

Simulator detectors tools such as Argon’s Multi-Gas SIM promise to play an invaluable role in aiding trainees’ understanding of gas detection to ensure the right decisions are made, however challenging the scenario.

About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.

Real-Time Global Radon Map

Airthings, a company specializing in digital radon detectors, recently launched RadonMap.com, a live global Radon map.  The map pulls constantly-updating Radon level data from Airthings’ devices all over North America, Europe ,and beyond to provide current localized analysis and advice – ideal for anyone looking to for the risks associated with radon exposure.

Facts about Radon

Radon is a radioactive gas that occurs naturally when the uranium in soil and rock breaks down. It is invisible, odourless and tasteless. When radon is released from the ground into the outdoor air, it is diluted and is not a concern. However, in enclosed spaces, like homes and offices, it can sometimes accumulate to high levels, which can be a risk to the health of the occupants of the building.

Radon gas breaks down or decays to form radioactive elements that can be inhaled into the lungs. In the lungs, decay continues, creating radioactive particles that release small bursts of energy. This energy is absorbed by nearby lung tissue, damaging the lung cells. When cells are damaged, they have the potential to result in cancer when they reproduce.

Exposure to high levels of radon in indoor air results in an increased risk of developing lung cancer. The risk of cancer depends on the level of radon and how long a person is exposed to those levels.

Exposure to radon and tobacco use together can significantly increase your risk of lung cancer. For example, if you are a lifelong smoker your risk of getting lung cancer is 1 in 10. If you add long term exposure to a high level of radon, your risk becomes 1 in 3. On the other hand, if you are a non-smoker, your lifetime lung cancer risk at the same high radon level is 1 in 20.

Radon Map

RadonMap.com aggregates radon level data from Airthings’ devices dispersed all over the world to provide accurate, local radon readings for users seeking current and reliable insight into the dangerous indoor gas and how much exposure they are subjected to daily.

Previously, gaining an understanding of localized Radon readings was only possible through professionally-administered tests or government data, offering a one-time snapshot rather than a constantly-evolving picture. With the introduction of the Airthings RadonMap.com, radon levels and fluctuations can be tracked accurately through a community of user-generated data. RadonMap.com instantly becomes a very reliable and up-to-date information source available for alerting the public about the presence of Radon in their environments and enabling them to take corrective action, if necessary, before a situation becomes critical.

About Airthings

Airthings is a Norwegian tech company that develops and manufactures both professional and consumer facing technology. These products include monitors for radon and other dangerous indoor air pollutants. The company was founded in 2008.

Advanced Explosives Detection System at Indianapolis Airport

Smiths Detection, headquartered in Maryland, recently announced that it had won a competitive bid process from the United States Transportation Security Administration (U.S. TSA) to supply their CTX 9800 explosives detection system to Indianapolis International Airport. The new CTX 9800 systems are the latest generation of CT scanners, helping to advance Indianapolis International’s security screening capabilities.

The CTX 9800 is a computed tomography (CT) explosives detection system. It has customized networking solutions; an intuitive user interface; efficient power consumption; and high-resolution 3D imaging capabilities. Certified by several regulatory authorities including the TSA, the CTX 9800 is also approved by the European Civil Aviation Conference as meeting Standard 3 requirements.

CTX9800 CT Explosives Detection System

Shan Hood, President of Smiths Detection Inc., said, “Smiths Detection is committed to providing the latest in detection technology, helping airports, like Indianapolis, to take advantage of cutting-edge solutions which enhance the passenger experience. The TSA’s selection of the CTX 9800 system for Indianapolis International Airport is a testament to Smiths Detection’s position as a global leader in the use of computed tomography and our long history of partnering with airports and authorities to help keep the traveling public moving safely and efficiently.”

The company also announced that it recently received an order of more than $10 million to supply its RadSeeker, handheld radioisotope detectors and identifiers for screening at Customs and Border Protection (CBP) ports of entry.  The order is part of a five year indefinite delivery/indefinite quantity (IDIQ) contract with DHS Domestic Nuclear Detection Office (DNDO), which was announced in January of 2016.

RadSeeker Hand-held radioisotope identifier (RIID)

 

Validation of handheld X-Ray Fluorescence for In-Situ Measurement of Mercury in Soils

Researchers recently reported the results of an evaluation of a handheld X-ray fluorescence (XRF) device as a field screening tool for soil mercury as part of on-going remedial investigations along the South River in Waynesboro, Virginia.  As reported by the research team, the method achieved a detection limit of 7.4 mg/kg Hg with a 60-s analysis time, which improves upon earlier attempts and is sufficient for detecting mercury at generic risk assessment soil screening levels (23 mg/kg Hg).  The study also demonstrated levels of accuracy and precision for the method that rivaled traditional laboratory methods.  In a split-sample comparison with laboratory Method 7471A, field XRF results agreed with an R2 of 0.93 and a median coefficient of variation of 15%.  Precision estimates from duplicate and triplicate samples were not statistically different between the two methods and were constrained by sample heterogeneity rather than by method capabilities.

The study demonstrated that handheld XRF can be successfully used at contaminated sites to achieve high quality Hg results that are accurate, precise, and at a level of sensitivity commensurate with generic risk assessment screening levels.

Schematic of an X-ray fluorescence (XRF) device