Posts

Top Environmental Clean Up Projects throughout Canada

by David Nguyen, Staff Writer

1. The Randle Reef Contaminated Sediment Remediation Project – Hamilton, Ontario

Cost: $138.9 million

Contaminant: polycyclic aromatic hydrocarbons (PAHs), heavy metals

Approximately 60 hectares in size and containing 695 000 cubic metres of sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals, the Randle Reef restoration project is three decades in the making. The pollution stems from various industries in the area including coal gasification, petroleum refining, steel making, municipal waste, sewage and overland drainage.1

Slated to be completed in three stages, the first stage involved the completion of a double steel sheet-piled walled engineered containment facility (ECF) around the most contaminated sediments, with stage 2 consists of dredging of the contaminated sediments into the ECF. Stage 3 will involve dewatering of the sediments in the ECF and treating the wastewater to discharge back into the lake, and the sediments will be capped with 60 cm of sand and silt enriched with organic carbon. This cap will both the isolate the contaminated sediments from the environment and form a foundation or future port structures. The ECF will be capped with layers of several material, including various sizes of aggregate, geo-textile and geo-grid, wickdrains, and asphalt and or concrete. This isolates the contaminants and provides a foundation for future port structures.

The project is expected to be completed by 2022 and cost $138.9 million. The Hamilton Port Authority will take over monitoring, maintenance, and development responsibilities of the facility for its expected 200-year life span. It is expected to provide $151 in economic benefits between job creation, business development, and tourism.

The Canada–United States Great Lakes Water Quality Agreement listed Hamilton harbour (which contains Randle Reef) as one of 43 Areas of Concern on the Great Lakes. Only 7 have been removed, 3 of which were in Canada.

2. Port Hope Area Initiative – Port Hope, Ontario

Cost: $1.28 billion

Contaminant: low-level radioactive waste (LLRW), industrial waste

The town of Port Hope, Ontario has about 1.2 million cubic metres of historic LLRW across various sites in the area. The soils and materials contain radium-226, uranium, arsenic, and other contaminants resulting from the refining process of radium and uranium between 1933 and 1988. Additional industrial waste containing metals, hydrocarbons, and dried sewage and sludge with copper and polychlorinated biphenyl (PCBs) will also be contained at the new facility.

The material was spread across town as the tailings were given away for free to be used as fill material for backyards and building foundations. An estimated 800 properties are affected, but the low-level radiation poses little risk to humans. The Port Hope Area Initiative will cost $1.28 billion and will include monitoring before, during, and after the construction of a long term management waste facility (LTMWF).

The LTWMF will be an aboveground engineered storage mound on the site of an existing LLRW management facility to safely store and isolate the contaminated soil and material, as well as other industrial waste from the surrounding area. The existing waste will also be excavated and relocated to the engineered mound. Leachate collection system, monitoring wells, and sensors in the cover and baseliner will be used to evaluate the effectiveness of the storage mound, allowing for long term monitoring of the waste.

The facility also contains a wastewater treatment plant that will treat surface water and groundwater during construction of the facility, as well as the leachate after the completion of the storage mound. The plant utilizes a two stage process of chemical precipitation and clarification (stage 1) and reverse osmosis (stage 2) to treat the water to meet the Canadian Nuclear Safety Commission requirements for water discharged to Lake Ontario.

3. Marwell Tar Pit – Whitehorse, Yukon Territory

Cost: $6.8 million

Contaminant: petroleum hydrocarbons (PHCs), heavy metals

This $6.8 million project funded by the governments of Canada and Yukon will remediate the Marwell Tar Pit in Whitehorse, which contain 27 000 cubic metres of soil and groundwater contaminated with hydrocarbons, such as benz[a]anthracene and heavy and light extractable petroleum hydrocarbons and naphthalene, and heavy metals such as manganese. Some of the tar has also migrated from the site.

Contamination began during the Second World War, when a crude oil refinery operated for less than one year before closing and being dismantled. The sludge from the bottom of dismantled storage tanks (the “tar”) was deposited in a tank berm, and over time other industries and businesses added other liquid waste to the tar pit. In the 1960s the pit was capped with gravel, and in 1998 declared a “Designated Contaminated Site.”

The project consists of three phases: preliminary activities, remedial activities, and post-remedial activities. The preliminary phase consisted of consolidating and reviewing existing information and completing addition site assessment.

The second phase of remedial activities began in July 2018 and involves implementing a remedial action plan. Contaminated soil segregated and heated through thermal conduction, which vaporizes the contaminants, then the vapours are destroyed by burning. Regular testing is done to ensure air quality standards are met. The main emissions from the site are carbon dioxide and water vapour. Remediated soil is used to backfill the areas of excavation. This phase is expected to be completed in 2019-2020.

The final phase will involve the monitoring of the site to demonstrate the remediation work has met government standards. This phase is planned to last four years. The project began in 2011 and is expected to be completed in 2020-2021.

4. Boat Harbour – Nova Scotia

Cost: approx.$133 million

Contaminant: PHCs, PAHs, heavy metals, dioxins and furans

The provinces largest contaminated site, Boar Harbour, is the wastewater lagoon for the local pulp mill in Abercrombie Point, as well as the discharge point for a former chemical supplier in the area. Prior to 1967, Boat Harbour was a saltwater tidal estuary covering 142 hectares, but a dam built in 1972 separated Boat Harbour from the ocean, and it is now a freshwater lake due to the receiving treated wastewater from the mill since the 1967.

The wastewater effluent contains contaminants including dioxins and furans, PAHs, PHCs, and heavy metals such as cadmium, mercury, and zinc. In 2015, the government of Nova Scotia passed The Boat Harbour Act, which ordered that Boat Harbour cease as the discharge point for the pulp mill’s treated wastewater in 2020, which allows time to build a new wastewater treatment facility and time to plan the remediation of Boat Harbour.

The estimated cost of the cleanup is $133 million, which does not include the cost of the new treatment facility. The goal is to return the harbour to its original state as a tidal estuary. The project is currently in the planning stages and updates can be found at https://novascotia.ca/boatharbour/.

5. Faro Mine – Faro, Yukon

Cost: projected$450 million

Contaminant: waste rock leachate and tailings

Faro Mine was once the largest open-pit lead-zinc mine in the world, and now contains about 70 million tonnes of tailings and 320 million tonnes of waste rock, which can potentially leach heavy metals and acids into the environment. The mine covers 25 square kilometres, and is located near the town of Faro in south-central Yukon, on the traditional territory of three Kasha First Nations – the Ross River Dena Council, Liard First Nation and Kaska Dena Council. Downstream of the mine are the Selkirk First Nation.

The Government of Canada funds the project, as well as leads the maintenance, site monitoring, consultation, and remediation planning process. The Government of Yukon, First Nations, the Town of Faro, and other stakeholders are also responsible for the project and are consulted regularly to provide input.

The entire project is expected to take about 40 years, with main construction activities to be completed by 2022, followed by about 25 years of remediation. The remediation project includes upgrading dams to ensure tailings stay in place, re-sloping waste rock piles, installing engineered soil covers over the tailings and waste rock, upgrading stream diversions, upgrading contaminant water collection and treatment systems.

6. Sylvia Grinnell River Dump – Iqaluit, Nunavut

Cost: $5.4 million

Contaminant: PHCs, polychlorinated biphenyls (PCBs), pesticides

Transport Canada awarded a contract of over $5.4 million in 2017 for a cleanup of a historic dump along the mouth of Sylvia Grinnell River in Iqaluit, Nunavut. The dump contains metal debris from old vehicles and appliances, fuel barrels, and other toxic waste from a U.S. air base, and is a site for modern day rogue dumping for items like car batteries. This has resulted in petroleum hydrocarbons, polychlorinated biphenyls (PCBs), pesticides, and other hazardous substances being identified in the area.

The Iqaluit airfield was founded in Frobisher Bay by the U.S. military during World War 2 as a rest point for planes flying to Europe. During the Cold War, the bay was used as part of the Distant Early Warning (DEW) Line stations across the north to detect bombers from the Soviet Union. When the DEW was replaces by the North Warning System in the 1980s, these stations were abandoned and the contaminants and toxic waste left behind. Twenty-one of these stations were remediated by the U.S. Department of National Defence at a cost of about $575 in 2014.

The Sylvia Grinnell River remediation project is part of the Federal government’s responsibility to remediate land around the airfield that was transferred to the Government of Nunavut in the 1990s.The contract was awarded in August 2017 and was completed in October. The remaining nontoxic is sealed in a new landfill and will be monitored until 2020.

7. Greenwich-Mohawk Brownfield – Brantford, Ontario

Cost: $40.78 million

Contaminant: PHC, PAC, heavy metals, vinyl chloride

The City of Brantford have completed a cleanup project of 148 000 cubic metres of contaminated soil at the Greenwich-Mohawk brownfield site. The area was historically the location of various farming manufacturing industries that shut down, leaving behind contaminants like PHC, PAC, heavy metals like lead, xylene, and vinyl chloride.

Cleanup began in 2015, and consisted coarse grain screening, skimming, air sparging, and recycling of 120 000 litres of oil from the groundwater, using biopiles to treat contaminated soil onsite with 73% of it being reused and the rest requiring off site disposal.

Barriers were also installed to prevent future contamination from an adjacent rail line property, as well as to contain heavy-end hydrocarbons discovered during the cleanup that could not be removed due to the release odorous vapours throughout the neighbourhood. The 20 hectare site took two years to clean and costed only $40.78 million of the allocated $42.8 million between the all levels of government, as well as the Federation of Canadian Municipalities Green Municipal Fund.

8. Rock Bay Remediation Project – Victoria, British Columbia

Cost: $60 million

Contaminant: PAHs, hydrocarbons, metals

Located near downtown Victoria and within the traditional territories of the Esquimalt Nation and Songhees Nation, the project entailed remediating 1.73 hectares of contaminated upland soils and 2.02 hectares of contaminated harbour sediments. The site was the location of a former coal gasification facility from the 1860s to the 1950s, producing waste products like coal tar (containing PAHs), metals, and other hydrocarbons, which have impacted both the sediments and groundwater at the site.

Remediation occurred in three stages. From 2004 to 2006, the first two stages involving the remediation of 50 300 tonnes of hazardous waste soils, 74 100 tonnes of non-hazardous waste soils, and 78 500 tonnes of contaminated soils above commercial land use levels. In 2009, 250 tonnes of hazardous waste were dredged from two sediment hotspots at the head of Rock Bay. About 7 million litres of hydrocarbon and metal impacted groundwater have been treated or disposed of, and an onsite wastewater treatment plant was used to return treated wastewater to the harbour.

Construction for the final stage occurred between 2014 to 2016 and involved:

  • installing shoring along the property boundaries to remove up to 8 metres deep of contaminated soils,
  • installing a temporary coffer dams
  • draining the bay to remove the sediments in dry conditions, and
  • temporary diverting two storm water outfalls around the work area.

Stage three removed 78 000 tonnes of contaminated and 15 000 tonnes of non-contaminated sediment that were disposed of/ destroyed at offsite facilities.

Final post-remediation monitoring was completed in January 2017, with post-construction monitoring for 5 years required as part of the habitat restoration plan to ensure the marine habitat is functioning properly and a portion of the site will be sold to the Esquimalt Nation and Songhees Nation.

9. Bushell Public Port Facility Remediation Project – Black Bay (Lake Athabasca), Saskatchewan

Cost: $2 million

Contaminant: Bunker C fuel oil

 Built in 1951 and operated until the mid-1980s, the Bushell Public Port Facility consist of two lots covering 3.1 hectares with both upland and water lots. The facility supplied goods and services to the local mines, and petroleum products to the local communities of Bushell and Uranium City. Historical activities like unloading, storing, and loading fuel oil, as well as a large spill in the 1980s resulted in the contaminated soil, blast rock, and bedrock in Black Bay that have also extended beyond the waterlot boundaries.

The remediation work occurred between 2005 to 2007, and involved excavation of soil and blast rock, as well as blasting and removing bedrock where oil had entered through cracks and fissures.

Initial remediation plans were to crush and treat the contaminated material by low temperature thermal desorption, which incinerates the materials to burn off the oil residue. However, opportunities for sustainable reuse of the contaminated material came in the use of the contaminated crush rock for resurfacing of the Uranium City Airport. This costed $1.75 million less than the incineration plan, and saved the airport project nearly 1 million litres of diesel fuel. The crush was also used by the Saskatchewan Research Council in the reclamation of the Cold War Legacy Uranium Mine and Mill Sites. A long term monitoring event is planned for 2018.

10. Thunder Bay North Harbour – Thunder Bay, Ontario

Cost: estimated at upwards to $50 million

Contaminant: Paper sludge containing mercury and other contaminants

 While all of the projects discussed so far have either been completed or are currently in progress, in Thunder Bay, the plans to clean up the 400 000 cubic metres of mercury contaminated pulp and fibre have been stalled since 2014 due to no organization or government designated to spearhead the cleanup.

While the water lot is owned by Transport Canada, administration of the site is the responsibility of the Thunder Bay Port Authority, and while Transport Canada has told CBC that leading the cleanup is up to the port, the port authority was informed by Transport Canada that the authority should only act in an advisory role. Environmental Canada has participated in efforts to advance the planning of the remediation work, but is also not taking the lead in the project either. Further complications are that the industries responsible for the pollution no longer exist.

Industrial activities over 90 years have resulted in the mercury contamination, which range in concentrations between 2 to 11 ppm on surface sediments to 21 ppm at depth. The thickness ranges from 40 to 380 centimetres and is about 22 hectares in size. Suggested solutions in 2014 include dredging the sediment and transferring it to the Mission Bay Confined Disposal Facility, capping it, or building a new containment structure. As of October 2018, a steering committee lead by Environment Canada, Transport Canada, Ontario’s environmental ministry and the Thunder Bay Port Authority, along with local government, Indigenous groups, and other stakeholders met to evaluate the remediation options, as well as work out who will lead the remediation.

Ontario Government’s Plans on the Environment: Impact on Brownfield Development

The Ontario Government released a Made-in-Ontario Environment Plan in late 2018 in partially in response to criticism that it had no plan for addressing climate change after it cancelled the greenhouse gas (GHG) cap-and-trade program of the previous government. The plan includes several proposals that should be on interest to persons involved in brownfield development.

The Ontario government 52-page document (entitled (“Preserving and Protecting or Environment for Future Generations: A Made-in-Ontario Environment Plan”) commits to protecting air, lakes and rivers; addressing climate change; reducing litter and waste; and conserving land and greenspace. Many of the measures establish a direction but the details will have to be further developed.

With respect to contaminated sites and brownfields, the document talks about the “polluter pay”, and engaging environment business and entrepreneurs. However, it is lacking in details.

Generating GHG from Brownfield Projects

The Ontario government’s proposed replaced to the scraped GHG trading regulation is the Creating the Ontario Carbon Fund. While details are to be worked out, the plan proposes to use $400M of government funding with the aim of leveraging additional private funds on a 4:1 basis to support “investment in clean technologies that are commercially viable.” The fund will also support a “reverse auction” model whereby emitters will “bid” for funding to support their GHG reduction projects.

There is a possibility that developers involved in brownfield redevelopment could be eligible for government funding depending on if clean technologies are employed in the clean-up and GHG reductions are realized versus the traditional dig-and-dump approach to site clean-up.

2010 Photo of the former Kitchener Frame Building (Photo Credit: Philip Walker/Record staff)

Streamlined environmental approvals

The Made-in-Ontario Plan notes that environmental approvals should be prioritized for businesses that want to implement low GHG technology or approaches. This is the latest promise from the Ontario government to speed up the approval process.

Seasoned veterans in the environmental sector remember similar promises made the government on fast-tracked approvals. There are still those who remember the Environmental Leaders Program in which speedy approval was promised to companies that committed to above-compliance environmental activities and targets.

With respect to this latest promise on speedy approvals, the document is silent on if “speed” will be applied to the Environment Ministry review of site specific risk assessments (SSRA’s) that are submitted to the Ontario Environment Ministry for approval instead of following the generic clean-up standards.

Measures to promote healthy, clean soils

The Made-in-Ontario Plan plan commits to “revise the brownfield regulation and record of site condition guide” as part of a basket of measures to promote clean soils. Again, the document is lacking in details.

The previous Ontario government had proposed reasonable changes to the Record of Site Condition Regulations (O. Reg. 153/04). One important aspect of the proposed change is related to road-salt impacts on a property. As the regulations currently stands, road salt-related impacts can only be exempted from clean-up if it can be proven they are related to the application of de-icing salts on a public highway. Under the proposed changes to the regulations, the exemption will include road salt applied to a property ‘for the purpose of traffic and pedestrian safety under conditions of snow/ice’. This one change, if implemented, would save thousands of dollars in clean-up costs at many sites undergoing redevelopment in Ontario.

The previous Ontario government had also proposed a much-need excess soil regulation. There has been extensive consultation on the proposed regulation over a five-year period. If implemented, the regulation would address the gaps surrounding the ability for enforcement on mismanagement of excess soils in Ontario. It would also open up the opportunity for beneficial reuse of excess soil.

Former Contaminated Mine Site in NWT Declared Clean

The Government of Canada recently announced that the former Tundra Gold Mine, located in the Northwest Territories, has been successfully remediated.  The cost of clean-up was $110 million and was paid for by the government.

Tundra Mine was briefly operational in the 1960’s and was used as a dumping ground in the 1980’s.  It’s former owner, Royal Oak Mines went bankrupt in 1999.

Remediation of the site included revegetating soil, sealing mine openings, consolidating and isolating tailings and waste rock, treating petroleum hydrocarbon impacted soils, erecting barriers for erosion control, and removing buildings.  The clean-up project lasted more than a decade.

Though some re-vegetation has begun, the land – around 240 km north-east of Yellowknife – will remain recognizably an old industrial site for decades to come.

Tundra Mine Site post clean-up (Photo Credit: Jamie Malbeuf/CBC)

Dominic LeBlanc, Canada’s newly installed minister for northern affairs, called Tundra’s remediation “a great example of the hard work of northerners and the importance of partnerships with local Indigenous communities.”  Northern residents represented 76 percent of the project’s suppliers and 61 percent of its employees.  The Minister stated that the restoration will help local Dene and Métis peoples once again use the land for traditional practices.

The Canadian government will continue to oversea that monitoring of the site to ensure it remains stable.  Monitoring, using a combination of on-site equipment and drones, will cost an unspecified further sum each year.

More work to be done remediating the North

According to an article in Cabin Radio, Tundra’s successful clean-up remains a drop in the larger ocean of contaminated sites within the NWT.  Tundra is the 24th site under federal supervision to have reached this stage, a spokesperson for Crown-Indigenous Relations and Northern Affairs Canada said by email to on Cabin Radio.

federal webpage last updated in 2013 suggests Canada is responsible for more than 50 significant contaminated sites in the territory, including those 24.

separate federal website lists 1,634 contaminated sites within the Northwest Territories, where a contaminated site is defined by the Federal Goverment as “one at which substances occur at concentrations (1) above background (normally occurring) levels and pose or are likely to pose an immediate or long term hazard to human health or the environment, or (2) exceeding levels specified in policies and regulations.”

Some entries on the latter list are considered remediated and their files closed. Some are smaller sites not felt worthy of their own, separate clean-up projects.  Several dozen of them, for example, are grouped under one project to clean up the Canol Trail, a World War Two initiative which left contaminated soil, asbestos, and a range of hazardous materials strewn across 355 km of the Sahtu.

In the 2017-18 financial year, public records show federal agencies were obliged to spend money on some 275 separate contaminated sites in the Northwest Territories.  $157,000 was spent assessing a range of those sites, while a little over $103 million was spent on remediation work.

Of that figure, around $23.6 million was spent remediating the Tundra site in that financial year.

Unsurprisingly, Yellowknife’s Giant Mine – considered among the most toxic sites in Canada, harbouring 237,000 tonnes of poisonous arsenic trioxide in underground chambers – was the only site receiving more remediation money.

In the same period Canada spent just over $36 million on Giant, where full remediation work does not even begin until 2020.

Giant, like Tundra, was owned by Royal Oak when the company collapsed and the site became an unwanted federal problem. The full bill for Giant’s clean-up and maintenance – a program of indefinite, certainly decades-long duration – is expected to reach $1 billion in today’s money.

Tundra Mine 1963 (Photo Credit: Gerry Riemann)

 

New Technology for Mapping DNAPL Contamination

Laser-induced fluorescence (LIF)

As reported in Groundwater Monitoring and Remediation (38(3):28-42), DyeLIF™ is a new version of laser-induced fluorescence (LIF) for high-resolution 3D mapping of NAPLs in the subsurface.   DyeLIF eliminates the requirement that the NAPL contains native fluorophores (such as those that occur in compounds like PAHs) and therefore can be used to detect chlorinated solvents and other nonfluorescing compounds.

NAPLs were previously undetectable with conventional LIF tools. With DyeLIF, an aqueous solution of water and nontoxic hydrophobic dye is continuously injected ahead of the sapphire detection window while the LIF probe is being advanced in the subsurface.  If soil containing NAPL is penetrated, the injected dye solvates into the NAPL within a few milliseconds, creating strong fluorescence that is transmitted via fiber-optic filaments to aboveground optical sensors. This paper describes a detailed field evaluation of the novel DyeLIF technology performed at a contaminated industrial site in Lowell, Mass., where chlorinated solvent DNAPL persists below the water table in sandy sediments..

The DyeLIF system was field tested at a Formerly Used Defense (FUD) facility in Massachusetts in Fall 2013 (Geoprobe® delivery) and again in March 2014 (CPT delivery). The primary field demonstration completed in 2013 included two components: one week of DyeLIF probing and a second week of follow-on soil coring using research-quality direct push (DP) soil coring methods in order to compare DyeLIF results to colorimetric dye shake tests and laboratory analysis.

Several performance objectives were established in the project demonstration work plan and all were met or exceeded. The performance objective for chemical analysis was 70% consistency between positive DyeLIF responses and samples when DNAPL saturations were greater than 5%. The demonstration results showed 100% consistency between chemical analysis and DyeLIF for saturations greater than 1.9% (35 of 35 samples), and 95% consistency for estimated saturations greater than 0.5% (40 of 42 samples).

ESTCP funded Project ER-201121 to demonstrate the DyeLIF technology.  Additional details on the technology can be found at the U.S. Department of Defence Strategic Environmental Research and Development Program (SERDP) and the U.S. Department of Defence Environmental Security Technology Certification Program (ESTCP) link at SERDP-ESTCP.

2D and 3D Conceptual Site Models of a Contaminated Property

Nova Scotia Announces Plan to Assess Contaminated Site in Halifax

The Nova Scotia government recently announced that it is taking the first steps to determine what’s needed to remediate a former construction and demolition site in Harrietsfield, Halifax Regional Municipality.

Homemade signs line the road to Harrietsfield, N.S., on May 14, 2018.

Signs of the water contamination issue in Harrietsfield, Nova Scotia. (Alexa MacLean/Global News)

Nova Scotia Lands Inc. will commission a site assessment this summer to determine the extent of contamination, how long it will take to remediate and how much it will cost.  It will also determine the condition of the existing infrastructure and evaluate what potential impacts the remediation might have. The cost of the assessment is about $250,000.

“This site has been a problem for the community for far too long. We’re taking an important and necessary action to address it,” said Environment Minister Iain Rankin.

Two ministerial orders were issued in 2016, ordering the companies to assess the contamination that was impacting residents’ wells and submit a plan to remediate it. Those orders have not been followed.

Mr. Rankin has invoked his authority under the Environment Act to ensure those orders are carried out.

Under the act, the minister also has the authority to hold the former operators of the site responsible for the costs of remediation.

“We will pursue all available options,” said Mr. Rankin.

In 2016, the province had water treatment facilities installed at eight area homes where there was evidence that well water was being impacted by contamination at this facility.

A court case is ongoing against two companies that operated the former RDM Recycling site between 2002 and 2013. The site assessment will not impact the court case. The last court date was in late June.

RDM Recycling Plant, Harrietsfield, Nova Scotia (Photo Credit: CBC)

Controlling cleanup costs for contaminated land

by Dr. Harm Gross, Western Investor

As reported by Dr. Harm Gross in the Western Investor, in British Columbia, the cost of contaminated site cleanup has grown steadily since the Contaminated Site Regulation became law on April 1, 1997. There are several reasons for this change, some of which are under the control of “persons responsible”, chiefly landowners.

An uncontrollable cost factor is the proliferation of regulations, which ballooned to an estimated 10,000 double-sided pages in British Columbia. On November 1, 2017, Stage 10 omnibus amendments to the CSR came into effect, changing concentrations deemed harmful for a broad range of contaminants and adding a significant number of new ones. This meant that work before that date would become non-compliant overnight, causing environmental consulting companies to rush over 100 submissions for a Certificate of Compliance before this deadline to grandfather their work and avoid additional costs for their clients.

Regulations pertaining to contaminated sites are not just evolving in British Columbia, but have seen substantial updates across Canada in recent years.

Saskatchewan’s updated Environmental Management and Protection Act came into effect in June 2015. This legislation thoroughly overhauled the old Act by introducing a new impacted sites registry and by providing the regulator with more power to order persons responsible to conduct site assessments.

New guidelines were also introduced in Alberta, where the regulator released a new Environmental Site Assessment Standard in March 2016.

Manitoba enacted amendments to the Province’s Contaminated Sites Remediation Regulation in April 2014. While the intended aim of these new regulations and guidelines is to move the focus towards results-based frameworks, any change and expansion of rules inevitably leads to uncertainty for stakeholders. Uncertainty particularly stems from the need of establishing precedent with the regulator when the new rules are applied in the real world. It is up to the consultant to successfully navigate their clients through the new reality and reduce uncertainty. The consultant’s knowledge of the regulations, and proficiency in correctly interpreting and applying new rules, can have significant impacts on the accuracy of cost estimates and actual costs for site assessments and remedial work.

Former bulk fuel storage leak, North Vancouver, BC

With regulations in flux and frequent changes in rules, the potential for lowering and accurately predicting costs for site remediation projects is thus of great interest to responsible persons. The potential savings by inviting an experienced review of proposed remediation plans can be significant. At one site the savings for a client was $15 million; more commonly, savings are in the 6-figure or low 7-figure range. Incorrect investigative work is the most frequent source of error. This ranges from faulty field techniques when sampling groundwater wells, through unfamiliarity with laboratory methods for distinguishing man-made from naturally occurring substances, to inadequate comprehension of the myriad environmental regulations. Investigating contaminants requires great care when the difference between contamination and no contamination is measured at the extremely low concentrations of parts per million in soil, or the even lower concentrations of parts per billion in water. We have seen numerous examples where mistakes have tarred a site.

The public sector is no less prone to erroneous estimations of remediation cost. In April 2014, the parliamentary budget officer reported that the federal government has underestimated the cost of cleaning up contaminated sites under its jurisdiction by at least $2 billion, putting the total liability for contaminated sites to almost $7 billion. This was due to the fact that many sites in the inventory had yet to be assessed. While it seems relatively self-evident that proper site investigations are a prerequisite and absolute must for cost estimates to be accurate, such oversights are unfortunately abundant in the private sector. All too often consultants provide flimsy cost estimates based on incomplete or deficient investigative data.

Businesspeople frequently complain about the irritation of unreliable cost estimates, and rightfully so – nowhere is this more prevalent than in the environmental consulting industry.

Technical experts are often loathe to accept responsibility for cost estimates for fear of finding undiscovered contamination, running into regulatory snafus or overlooking issues which later prove substantial.

Next Environmental has taken the unprecedented step of providing fixed price quotes for a comprehensive scope of work at each step of investigation or remediation, thus entirely eliminating the cost uncertainties for clients. This service, unique in the contaminated sites business, is possible due to the skillful application of regulatory proficiency to address the business needs of clients. Time will tell whether this cost control measure spreads to other firms.

This article was originally published in Western Investor.

____________________

About the Author

Dr. Harm Gross is the owner and President NEXT Environmental Inc.  He is currently a Registered Professional Biologist (R.P.Bio) and an Approved Professional of the Contaminated Sites Approved Professionals Society (CSAP Society), and has a wealth of experience obtaining Ministry Instruments and other environmental certifications for NEXT’s Clients. NEXT provides environmental consulting services including investigation, remediation and risk assessment of contaminated property for clients throughout BC and Alberta.

 

Activated Carbon-Based Technology for In Situ Subsurface Remediation

The U.S. EPA Office of Superfund Remediation and Technology Innovation recently published a fact sheet about an emerging remedial technology that applies a combination of activated carbon (AC) and chemical and/or biological amendments for in situ remediation of soil and groundwater contaminated by organic contaminants, primarily petroleum hydrocarbons and chlorinated solvents.  The technology typically is designed to carry out two contaminant removal processes: adsorption by AC and destruction by chemical and/or biological amendments.

With the development of several commercially available AC-based products, this remedial technology has been applied with increasing frequency at contaminated sites across the country, including numerous leaking underground storage tank (LUST) and dry cleaner sites (Simon 2015).  It also has been recently applied at several Superfund sites, and federal facility sites that are not on the National Priorities List.

The fact sheet provides information to practitioners and regulators for a better understanding of the science and current practice of AC-based remedial technologies for in situ applications. The uncertainties associated with the applications and performance of the technology also are discussed.

AC-based technology applies a composite or mixture of AC and chemical and/or biological amendments that commonly are used in a range of in situ treatment technologies.  Presently, five commercial AC-based products have been applied for in situ subsurface remediation in the U.S.: BOS-100® & 200® (RPI), COGAC® (Remington Technologies), and PlumeStop® (Regenesis) are the four most commonly used commercial products.  CAT-100® from RPI is the most recent product, developed based on BOS-100®.  One research group in Germany also developed a product called Carbo-Iron®.  The AC components of these products typically are acquired from specialized AC manufacturers.  These types of AC have desired adsorption properties for chlorinated solvents and petroleum hydrocarbons.  Different products also have different AC particle sizes, which determine the suitable injection approach and the applicable range of geological settings.

Example of powdered activated carbon “fracked” into the subsurface under high-pressure, causing preferential pathways into existing monitoring wells (Photo Credit: Regenesis)

 

Clean-up of Radioactive Material in Port Hope Finally Underway

After decades of study and planning, the clean-up or radioactive contamination in the community of Port Hope, Ontario is finally underway.  The Town of Port Hope, located approximately 100 km (60 miles) east on Toronto on Lake Ontario, has an estimated 1.2 million cubic metres (1.5 million cubic yards) of historic low-level radioactive waste scattered at various sites throughout the town.

The contaminated soil and material will be excavated to moved to the LongTerm Waste Management Facility, which is essentially an engineered aboveground landfill where the waste will be safely contained, and the long-term monitoring and maintenance of the new waste management facility.

Other historic low-level radioactive waste – primarily soil contaminated with residue ore from the former radium and uranium refining activities of Eldorado Nuclear — and specified industrial waste from various sites in urban Port Hope will be removed and safely transported to the new facility.

The historic low-level radioactive waste and contaminated soil, located at various sites in the Municipality of
Port Hope, are a consequence of past practices involving the refining of radium and uranium by a former federal Crown Corporation, Eldorado Nuclear Limited, and its private-sector predecessors. These waste materials contain radium-226, uranium, arsenic and other contaminants resulting from the refining process.

The historic waste and surrounding environment are monitored and inspected regularly to ensure the waste does not pose a risk to health or the environment. As part of the Port Hope Area Initiative (PHAI) construction and clean-up phase, the waste will be excavated and relocated to the new Port Hope long-term waste management facility.

In an interview with CBC, Scott Parnell is the General Manager of the Port Hope Area Initiative, which is in charge of the cleanup. He says that after decades of planning, the first loads of an estimated 1.2 million cubic metres of historic low-level radioactive waste will be on the move.

Scott Parnell, general manager of the Port Hope Area Initiative, stands near the town’s harbour.

“There’s been a lot of planning a lot of studies a lot of determination into how to approach the work safely, but this will be the first time we will be removing waste from the community,” said Parnell, who has overseen similar operations in Washington state and Alaska.

The $1.28-billion cleanup operation is a recognition by the federal government that the waste is its “environmental liability.” The radioactive tailings were the byproduct of uranium and radium refining operations run by Eldorado, a former Crown corporation, between 1933 and 1988.

Parnell says that the tailings were given away for free, which helps explain how the contamination was spread through the town.

“So, basically they offered it up and it was used for fill material to level up people’s backyards, for building foundations, for those kinds of things. So, that’s how the material got spread around the community,” Parnell said.

Parnell says an estimated 800 properties may be affected, but says there’s no indication the low levels of radiation are dangerous.

“There’s little human risk associated with the waste that’s identified here in Port Hope,” he said.

The first wastes to be remediated are currently stored under tarps at three locations including the Centre Pier, the Pine Street North Extension in the Highland Drive Landfill area and at the municipal sewage treatment plant. The Centre Pier is the first site to be remediated.

Aerial image of the first locations to be remediated. (source: Canadian Nuclear Laboratories)

 

 

Avoiding Common Phase Two ESA Errors – Part 2

By: Bill Leedham, P.Geo, QP, CESA.

Last month I discussed some common mistakes I have encountered in reviewing Phase Two Environmental Site Assessment reports, specifically in the initial planning stage, now it’s time to turn our attention to recognizing and reducing errors during the Phase Two ESA field work.

Sometimes, deficiencies that occur in the planning stages of a Phase Two ESA transfer into errors in field procedures.  This can be caused by poor communication between the project manager and field staff (i.e. the PM neglects to inform field personnel of specific project requirements, and/or field staff forget to include important sampling media or potential contaminants of concern).  Full, two-way communication is vital to successful completion of any Phase Two ESA. It’s not enough for senior staff to just assume that less experienced team members understand all the complexities of the sampling plan; nor is it acceptable for a project manager to fail to provide adequate guidance and answers to questions from the field.  I have always thought it was important for junior staff to ‘know what they don’t know’ and encouraged them to ask questions at any time.  When project managers are ‘too busy’ to answer questions and simply tell their staff to ‘figure it out themselves’ everyone loses.

Photo Credit: All Phase Environmental

Despite good intentions and full communication, deficiencies can still occur.  Some are the result of inexperience compounded by poor judgement; some are due to budget limitations or staffing shortfalls; and some are caused through poor sampling protocols.  Some of the more common field sampling errors can include: failure to sample all relevant media at a Site (e.g. no sediment or surface water sampling is undertaken despite the presence of a potentially impacted water body); failure to consider all potential contaminants of concern (e.g. sampling only for petroleum hydrocarbons at a fuel storage site and not volatile parameters like BTEX); failure to sample in locations where contaminants are most likely to occur or be detected (e.g. sampling only surficial or near surface soils, and not at the invert of a buried fuel tank or oil interceptor, or failure to sample groundwater in a potable groundwater situation); and lack of field or lab filtering of groundwater samples for metals analysis (failure to remove sediment prior to sample preservation can skew the results for metals analysis).

Inadequate sampling and decontamination procedures can also bias lab results, leading to inaccurate or faulty conclusions.  When samples are disturbed (such as grab samples of soil collected directly from a drill augur that has travelled through an impacted zone) or collected improperly (e.g. compositing soil samples for analysis of volatile components); the test results can be biased and may not be representative of actual site conditions.  Similarly, failure to properly clean drilling and sampling equipment can result in apparent impacts that are actually the result of cross contamination between sampling points. Consider using dedicated or disposable sampling equipment to reduce this potential. A suitable quality control program should also be implemented, including sufficient duplicate samples, trip blanks, etc. for QA/QC purposes, and inclusion of equipment rinsate blanks to confirm adequate decontamination.

These are only a few of the more common field sampling errors I have come across. In an upcoming article I will discuss other practical methods to reduce errors in Phase Two data interpretation and reporting.

About the Author

Bill Leedham is the Head Instructor and Course Developer for the Associated Environmental Site Assessors of Canada (AESAC); and the founder and President of Down 2 Earth Environmental Services Inc. You can contact Bill at info@down2earthenvironmental.ca

 

This article first appeared in AESAC newsletter.

U.S. EPA Targets Superfund Sites for Immediate Clean-up

The United States Environmental Protection Agency (U.S. EPA) recently released a list of Superfund Sites targeted for immediate, intense action, as of December 8th 2017. The list is a response to July’s Superfund Task Force Recommendations. The U.S. EPA considers the sites listed to benefit from Administrator Scott Pruitt’s direct engagement, requiring timely resolve of specific issues to streamline cleanup and redevelopment and protect human health and the environment.

3D Image of NAPL contamination at the B.F. GOODRICH facility in Calvert City, KY

The list, spanning all ten EPA regions across the United States, with accompanying plans, issues, and categorizations associated with each site, can be found here.

As reported in the Washington Post, the push is part of Administrator Scott Pruitt’s promise to prioritize the decades-old cleanup program, even as the Trump administration shrinks the size and reach of the EPA. The 21 sites highlighted by the agency span the country, from a former tannery site in New Hampshire to a contaminated landfill from the World War II-era Manhattan Project in St. Louis to an abandoned copper mine in Nevada.

“By elevating these sites, we are sending a message that EPA is, in fact, restoring its Superfund program to its rightful place at the center of the agency’s mission,” Pruitt said in a statement. “Getting toxic land sites cleaned up and revitalized is of the utmost importance to the communities across the country that are affected by these sites.”

The U.S. EPA said that it developed the list using sites “where opportunities exist to act quickly and comprehensively.” Notably, the agency also acknowledged that “there is no commitment of additional funding associated with a site’s inclusion on the list.”

Events

Nothing Found

Sorry, no posts matched your criteria