2018 Future of Global Conventional and Rapid Environmental Testing Market to 2025

Research and Markets recently published a research report entitled The Global Conventional and Rapid Environmental Testing market outlook report. The report covers from 2019 to 2025 and is a comprehensive work on Conventional and Rapid Environmental Testing industry. This research report provides complete insight into the penetration of Conventional and Rapid Environmental Testing across applications worldwide. Emphasis is given on the market drivers, restraints and potential growth opportunities. Detailed strategic analysis review of the Conventional and Rapid Environmental Testing market together with Porter’s five forces analysis is provided for global Conventional and Rapid Environmental Testing market.

The report assesses the 2018 market size in terms of market revenues based on the average prices of Conventional and Rapid Environmental Testing products worldwide. The report also presents a 6-year outlook on the basis of anticipated growth rates (CAGR) for different types of Conventional and Rapid Environmental Testing and the industry as a whole. Further, detailed pricing analysis of products is provided in the report.

The research work also explores how Conventional and Rapid Environmental Testing manufacturers are adapting to the changing market conditions through key market strategies. Further, company to company comparison (Company benchmarking) and Conventional and Rapid Environmental Testing product-to-product comparison (Product benchmarking) are included in the research work. Business, SWOT and financial Profiles of five leading companies in global Conventional and Rapid Environmental Testing market are included in the report.

A 2018 market report on the environmental testing industry by Esticast Research & Consulting predict a CAGR 6.6% during the forecast period of 2018 to 2025. The report also states that the market for environmental testing appears fragmented and fiercely competitive due to many large and small players churning the competition in the market.  Through the strategic partnership, acquisition, expansion, product & technology launch, and collaboration, these players try to gain a competitive edge.

The Esticast market report states that one driver behind the growth of the environmental testing market is the surging trend of health consciousness among the people. In addition, government authorities are posing strict regulations regarding environmental protection, with an aim to survive in a healthy environment. The report also predicts that environmental testing market to offer lucrative opportunities to the existing and new market players due to the privatization of environmental testing services.

A few of the major players in the environmental testing marketing include Eurofins Scientific SE, Suburban Testing Labs, Agilent Technologies Inc., SCS Global Services, Bureau Veritas S.A., SYNLAB, R J Hill Laboratories Limited, TÜV SÜD, ALS Limited, Intertek, and Pace Analytical.

For more information please Research and Markets report, click on:
https://www.researchandmarkets.com/publication/mrlxu9n/4750967



U.S.: Opportunity for Environmental R&D Funds for Small & Large Businesses

On January 29th 2019,  the U.S. Strategic Environmental Research and Development Program (SERDP) and the U.S. Environmental Security Technology Certification Program (ESTCP) released a solicitation for both small and large businesses to competitively fund research and development for environmental research.

The Department of Defense (DoD) SERDP Office is interested in receiving white papers for research focusing in the areas of Environmental Restoration, Munitions Response, Resource Conservation and Resiliency, and Weapons Systems and Platforms technologies. The ESTCP Office is interested in receiving white papers for innovative technology demonstrations that address DoD environmental and installation energy requirements as candidates for funding.

SERDP supports environmental research relevant to the management and mission of the DoD and supports efforts that lead to the development and application of innovative environmental technologies or methods that improve the environmental performance of DoD by improving outcomes, managing environmental risks, and/or reducing costs or time required to resolve environmental problems.

Awardees under this Broad Agency Announcement (BAA) will be selected through a multi-stage review process. The white paper review step allows interested organizations to submit research white papers for Government consideration without incurring the expense of a full proposal. Based upon the white paper evaluation by SERDP, each of the white paper submitters will be notified as to whether SERDP requests or does not request the submission of a full proposal. As noted in the instructions located on the SERDP website, evaluation criteria for white papers are Technical Merit and SERDP Relevance.

Instructions in the links below pertain to the submission of white papers responding to the SERDP BAA for Environmental Research and Development.  This BAA is for Private Sector Organizations. White papers submitted must be in response to a topic listed in the instructions on this page.

Information Related to the Broad Agency Announcement Open Solicitation

Cost of Nuclear Waste Clean-up in the U.S. estimated at $377 Billion

A new report by the United States General Accounting Office (GAO) estimates the total cleanup cost for the radioactive contamination incurred by developing and producing nuclear weapons in the United States at a staggering $377 billion (USD), a number that jumped by more than $100 billion in just one year.

The United States Department of Energy (DoE) Office of Environmental Management (EM) is responsible for cleaning up radioactive and hazardous waste left over from nuclear weapons production and energy research at DoE facilities. The $377 billion estimate largely reflects estimates of future costs to clean up legacy radioactive tank waste and contaminated facilities and soil. 

The U.S. GAO found that EM’s liability will likely continue to grow, in part because the costs of some future work are not yet included in the estimated liability. For example, EM’s liability does not include more than $2.3 billion in costs associated with 45 contaminated facilities that will likely be transferred to EM from other DOE programs in the future.

In 1967 at the height of the U.S.–Soviet nuclear arms race, the U.S. nuclear stockpile totaled 31,255 weapons of all types. Today, that number stands at just 6,550. Although the U.S. has deactivated and destroyed 25,000 nuclear weapons, their legacy is still very much alive.

Nuclear weapons were developed and produced at more than one hundred sites during the Cold War. Cleanup began in 1989, and EM has completed cleanup at 91 of 107 nuclear sites, Still, according to the GAO, “but 16 remain, some of which are the most challenging to address.” 

EM relies primarily on individual sites to locally negotiate cleanup activities and establish priorities. GAO’s analysis of DOE documents identified instances of decisions involving billions of dollars where such an approach did not always balance overall risks and costs. For example, two EM sites had plans to treat similar radioactive tank waste differently, and the costs at one site—Hanford—may be tens of billions more than those at the other site. 

Each of the 16 cleanup sites sets its own priorities, which makes it hard to ensure that the greatest health and environmental risks are addressed first.
This is not consistent with recommendations by GAO and others over the last two decades that EM develop national priorities to balance risks and costs across and within its sites. 

By far the most expensive site to clean up is the Hanford site, which manufactured nuclear material for use in nuclear weapons during the Cold War. In 2017, the DoE estimated site cleanup costs at $141 billion.

Environmental liabilities are high risk because they have been growing for the past 20 years and will likely keep increasing.

EM has not developed a program-wide strategy that determines priority sites. Instead, it continues to prioritize and fund cleanup activities by individual site. Without a strategy that sets national priorities, EM lacks assurance that it is making the most cost-effective cleanup decisions across its sites.

The GAO is made three recommendations to DOE: (1) develop a program-wide strategy that outlines how it will balance risks and costs across sites; (2) submit its mandated annual cleanup report that meets all requirements; and (3) disclose the funding needed to meet all scheduled milestones called for in compliance agreements, either in required annual reports or other supplemental budget materials.

Handbook on Managing Emerging Contaminants

The term “emerging contaminants” and its multiple variants has come to refer to unregulated compounds discovered in the environment that are also found to represent a potential threat to human and ecological receptors. Such contaminants create unique and considerable challenges as the push to address them typically outpaces the understanding of their toxicity, their need for regulation, their occurrence, and techniques for treating the environmental media they affect.

Unregulated compounds that could be potential issues continually surface as detection technology improves, driving the need to more quickly evolve our understanding, technology, and appropriate response options to address them. It is clear that conquering this challenge will play a role in protecting our quality of life.

In Emerging Contaminants Handbook, published by CRC Press, editors Caitlin H. Bell, Margaret Gentile, Erica Kalve, Ian Ross, and John Horst review the latest insights on emerging contaminant occurrence, regulation, characterization, and treatment techniques. The goal is to serve as a primer for deepening your emerging contaminant acumen in navigating their management where they may be encountered.

Use Emerging Contaminants Handbook to:

  • Explore the definition, identification, and life cycle of emerging contaminants.
  • Review current information on sources, toxicology, regulation, and new tools for characterization and treatment of:
    • 1,4-Dioxane (mature in its emerging contaminant life cycle)
    • Per- and polyfluoroalkyl substances (PFASs; a newer group of emerging contaminants)
    • Hexavalent chromium (former emerging contaminant with evolving science)
    • 1,2,3-Trichloropropane (progressing in its emerging contaminant life cycle)
  • Examine opportunities in managing emerging contaminants to help balance uncertainty, compress life cycle, and optimize outcomes.

Emerging Contaminants Handbook can be purchased at CRCPress.com or Amazon.com.

Top Environmental Clean Up Projects throughout Canada

by David Nguyen, Staff Writer

1. The Randle Reef Contaminated Sediment Remediation Project – Hamilton, Ontario

Cost: $138.9 million

Contaminant: polycyclic aromatic hydrocarbons (PAHs), heavy metals

Approximately 60 hectares in size and containing 695 000 cubic metres of sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals, the Randle Reef restoration project is three decades in the making. The pollution stems from various industries in the area including coal gasification, petroleum refining, steel making, municipal waste, sewage and overland drainage.1

Slated to be completed in three stages, the first stage involved the completion of a double steel sheet-piled walled engineered containment facility (ECF) around the most contaminated sediments, with stage 2 consists of dredging of the contaminated sediments into the ECF. Stage 3 will involve dewatering of the sediments in the ECF and treating the wastewater to discharge back into the lake, and the sediments will be capped with 60 cm of sand and silt enriched with organic carbon. This cap will both the isolate the contaminated sediments from the environment and form a foundation or future port structures. The ECF will be capped with layers of several material, including various sizes of aggregate, geo-textile and geo-grid, wickdrains, and asphalt and or concrete. This isolates the contaminants and provides a foundation for future port structures.

The project is expected to be completed by 2022 and cost $138.9 million. The Hamilton Port Authority will take over monitoring, maintenance, and development responsibilities of the facility for its expected 200-year life span. It is expected to provide $151 in economic benefits between job creation, business development, and tourism.

The Canada–United States Great Lakes Water Quality Agreement listed Hamilton harbour (which contains Randle Reef) as one of 43 Areas of Concern on the Great Lakes. Only 7 have been removed, 3 of which were in Canada.

2. Port Hope Area Initiative – Port Hope, Ontario

Cost: $1.28 billion

Contaminant: low-level radioactive waste (LLRW), industrial waste

The town of Port Hope, Ontario has about 1.2 million cubic metres of historic LLRW across various sites in the area. The soils and materials contain radium-226, uranium, arsenic, and other contaminants resulting from the refining process of radium and uranium between 1933 and 1988. Additional industrial waste containing metals, hydrocarbons, and dried sewage and sludge with copper and polychlorinated biphenyl (PCBs) will also be contained at the new facility.

The material was spread across town as the tailings were given away for free to be used as fill material for backyards and building foundations. An estimated 800 properties are affected, but the low-level radiation poses little risk to humans. The Port Hope Area Initiative will cost $1.28 billion and will include monitoring before, during, and after the construction of a long term management waste facility (LTMWF).

The LTWMF will be an aboveground engineered storage mound on the site of an existing LLRW management facility to safely store and isolate the contaminated soil and material, as well as other industrial waste from the surrounding area. The existing waste will also be excavated and relocated to the engineered mound. Leachate collection system, monitoring wells, and sensors in the cover and baseliner will be used to evaluate the effectiveness of the storage mound, allowing for long term monitoring of the waste.

The facility also contains a wastewater treatment plant that will treat surface water and groundwater during construction of the facility, as well as the leachate after the completion of the storage mound. The plant utilizes a two stage process of chemical precipitation and clarification (stage 1) and reverse osmosis (stage 2) to treat the water to meet the Canadian Nuclear Safety Commission requirements for water discharged to Lake Ontario.

3. Marwell Tar Pit – Whitehorse, Yukon Territory

Cost: $6.8 million

Contaminant: petroleum hydrocarbons (PHCs), heavy metals

This $6.8 million project funded by the governments of Canada and Yukon will remediate the Marwell Tar Pit in Whitehorse, which contain 27 000 cubic metres of soil and groundwater contaminated with hydrocarbons, such as benz[a]anthracene and heavy and light extractable petroleum hydrocarbons and naphthalene, and heavy metals such as manganese. Some of the tar has also migrated from the site.

Contamination began during the Second World War, when a crude oil refinery operated for less than one year before closing and being dismantled. The sludge from the bottom of dismantled storage tanks (the “tar”) was deposited in a tank berm, and over time other industries and businesses added other liquid waste to the tar pit. In the 1960s the pit was capped with gravel, and in 1998 declared a “Designated Contaminated Site.”

The project consists of three phases: preliminary activities, remedial activities, and post-remedial activities. The preliminary phase consisted of consolidating and reviewing existing information and completing addition site assessment.

The second phase of remedial activities began in July 2018 and involves implementing a remedial action plan. Contaminated soil segregated and heated through thermal conduction, which vaporizes the contaminants, then the vapours are destroyed by burning. Regular testing is done to ensure air quality standards are met. The main emissions from the site are carbon dioxide and water vapour. Remediated soil is used to backfill the areas of excavation. This phase is expected to be completed in 2019-2020.

The final phase will involve the monitoring of the site to demonstrate the remediation work has met government standards. This phase is planned to last four years. The project began in 2011 and is expected to be completed in 2020-2021.

4. Boat Harbour – Nova Scotia

Cost: approx.$133 million

Contaminant: PHCs, PAHs, heavy metals, dioxins and furans

The provinces largest contaminated site, Boar Harbour, is the wastewater lagoon for the local pulp mill in Abercrombie Point, as well as the discharge point for a former chemical supplier in the area. Prior to 1967, Boat Harbour was a saltwater tidal estuary covering 142 hectares, but a dam built in 1972 separated Boat Harbour from the ocean, and it is now a freshwater lake due to the receiving treated wastewater from the mill since the 1967.

The wastewater effluent contains contaminants including dioxins and furans, PAHs, PHCs, and heavy metals such as cadmium, mercury, and zinc. In 2015, the government of Nova Scotia passed The Boat Harbour Act, which ordered that Boat Harbour cease as the discharge point for the pulp mill’s treated wastewater in 2020, which allows time to build a new wastewater treatment facility and time to plan the remediation of Boat Harbour.

The estimated cost of the cleanup is $133 million, which does not include the cost of the new treatment facility. The goal is to return the harbour to its original state as a tidal estuary. The project is currently in the planning stages and updates can be found at https://novascotia.ca/boatharbour/.

5. Faro Mine – Faro, Yukon

Cost: projected$450 million

Contaminant: waste rock leachate and tailings

Faro Mine was once the largest open-pit lead-zinc mine in the world, and now contains about 70 million tonnes of tailings and 320 million tonnes of waste rock, which can potentially leach heavy metals and acids into the environment. The mine covers 25 square kilometres, and is located near the town of Faro in south-central Yukon, on the traditional territory of three Kasha First Nations – the Ross River Dena Council, Liard First Nation and Kaska Dena Council. Downstream of the mine are the Selkirk First Nation.

The Government of Canada funds the project, as well as leads the maintenance, site monitoring, consultation, and remediation planning process. The Government of Yukon, First Nations, the Town of Faro, and other stakeholders are also responsible for the project and are consulted regularly to provide input.

The entire project is expected to take about 40 years, with main construction activities to be completed by 2022, followed by about 25 years of remediation. The remediation project includes upgrading dams to ensure tailings stay in place, re-sloping waste rock piles, installing engineered soil covers over the tailings and waste rock, upgrading stream diversions, upgrading contaminant water collection and treatment systems.

6. Sylvia Grinnell River Dump – Iqaluit, Nunavut

Cost: $5.4 million

Contaminant: PHCs, polychlorinated biphenyls (PCBs), pesticides

Transport Canada awarded a contract of over $5.4 million in 2017 for a cleanup of a historic dump along the mouth of Sylvia Grinnell River in Iqaluit, Nunavut. The dump contains metal debris from old vehicles and appliances, fuel barrels, and other toxic waste from a U.S. air base, and is a site for modern day rogue dumping for items like car batteries. This has resulted in petroleum hydrocarbons, polychlorinated biphenyls (PCBs), pesticides, and other hazardous substances being identified in the area.

The Iqaluit airfield was founded in Frobisher Bay by the U.S. military during World War 2 as a rest point for planes flying to Europe. During the Cold War, the bay was used as part of the Distant Early Warning (DEW) Line stations across the north to detect bombers from the Soviet Union. When the DEW was replaces by the North Warning System in the 1980s, these stations were abandoned and the contaminants and toxic waste left behind. Twenty-one of these stations were remediated by the U.S. Department of National Defence at a cost of about $575 in 2014.

The Sylvia Grinnell River remediation project is part of the Federal government’s responsibility to remediate land around the airfield that was transferred to the Government of Nunavut in the 1990s.The contract was awarded in August 2017 and was completed in October. The remaining nontoxic is sealed in a new landfill and will be monitored until 2020.

7. Greenwich-Mohawk Brownfield – Brantford, Ontario

Cost: $40.78 million

Contaminant: PHC, PAC, heavy metals, vinyl chloride

The City of Brantford have completed a cleanup project of 148 000 cubic metres of contaminated soil at the Greenwich-Mohawk brownfield site. The area was historically the location of various farming manufacturing industries that shut down, leaving behind contaminants like PHC, PAC, heavy metals like lead, xylene, and vinyl chloride.

Cleanup began in 2015, and consisted coarse grain screening, skimming, air sparging, and recycling of 120 000 litres of oil from the groundwater, using biopiles to treat contaminated soil onsite with 73% of it being reused and the rest requiring off site disposal.

Barriers were also installed to prevent future contamination from an adjacent rail line property, as well as to contain heavy-end hydrocarbons discovered during the cleanup that could not be removed due to the release odorous vapours throughout the neighbourhood. The 20 hectare site took two years to clean and costed only $40.78 million of the allocated $42.8 million between the all levels of government, as well as the Federation of Canadian Municipalities Green Municipal Fund.

8. Rock Bay Remediation Project – Victoria, British Columbia

Cost: $60 million

Contaminant: PAHs, hydrocarbons, metals

Located near downtown Victoria and within the traditional territories of the Esquimalt Nation and Songhees Nation, the project entailed remediating 1.73 hectares of contaminated upland soils and 2.02 hectares of contaminated harbour sediments. The site was the location of a former coal gasification facility from the 1860s to the 1950s, producing waste products like coal tar (containing PAHs), metals, and other hydrocarbons, which have impacted both the sediments and groundwater at the site.

Remediation occurred in three stages. From 2004 to 2006, the first two stages involving the remediation of 50 300 tonnes of hazardous waste soils, 74 100 tonnes of non-hazardous waste soils, and 78 500 tonnes of contaminated soils above commercial land use levels. In 2009, 250 tonnes of hazardous waste were dredged from two sediment hotspots at the head of Rock Bay. About 7 million litres of hydrocarbon and metal impacted groundwater have been treated or disposed of, and an onsite wastewater treatment plant was used to return treated wastewater to the harbour.

Construction for the final stage occurred between 2014 to 2016 and involved:

  • installing shoring along the property boundaries to remove up to 8 metres deep of contaminated soils,
  • installing a temporary coffer dams
  • draining the bay to remove the sediments in dry conditions, and
  • temporary diverting two storm water outfalls around the work area.

Stage three removed 78 000 tonnes of contaminated and 15 000 tonnes of non-contaminated sediment that were disposed of/ destroyed at offsite facilities.

Final post-remediation monitoring was completed in January 2017, with post-construction monitoring for 5 years required as part of the habitat restoration plan to ensure the marine habitat is functioning properly and a portion of the site will be sold to the Esquimalt Nation and Songhees Nation.

9. Bushell Public Port Facility Remediation Project – Black Bay (Lake Athabasca), Saskatchewan

Cost: $2 million

Contaminant: Bunker C fuel oil

 Built in 1951 and operated until the mid-1980s, the Bushell Public Port Facility consist of two lots covering 3.1 hectares with both upland and water lots. The facility supplied goods and services to the local mines, and petroleum products to the local communities of Bushell and Uranium City. Historical activities like unloading, storing, and loading fuel oil, as well as a large spill in the 1980s resulted in the contaminated soil, blast rock, and bedrock in Black Bay that have also extended beyond the waterlot boundaries.

The remediation work occurred between 2005 to 2007, and involved excavation of soil and blast rock, as well as blasting and removing bedrock where oil had entered through cracks and fissures.

Initial remediation plans were to crush and treat the contaminated material by low temperature thermal desorption, which incinerates the materials to burn off the oil residue. However, opportunities for sustainable reuse of the contaminated material came in the use of the contaminated crush rock for resurfacing of the Uranium City Airport. This costed $1.75 million less than the incineration plan, and saved the airport project nearly 1 million litres of diesel fuel. The crush was also used by the Saskatchewan Research Council in the reclamation of the Cold War Legacy Uranium Mine and Mill Sites. A long term monitoring event is planned for 2018.

10. Thunder Bay North Harbour – Thunder Bay, Ontario

Cost: estimated at upwards to $50 million

Contaminant: Paper sludge containing mercury and other contaminants

 While all of the projects discussed so far have either been completed or are currently in progress, in Thunder Bay, the plans to clean up the 400 000 cubic metres of mercury contaminated pulp and fibre have been stalled since 2014 due to no organization or government designated to spearhead the cleanup.

While the water lot is owned by Transport Canada, administration of the site is the responsibility of the Thunder Bay Port Authority, and while Transport Canada has told CBC that leading the cleanup is up to the port, the port authority was informed by Transport Canada that the authority should only act in an advisory role. Environmental Canada has participated in efforts to advance the planning of the remediation work, but is also not taking the lead in the project either. Further complications are that the industries responsible for the pollution no longer exist.

Industrial activities over 90 years have resulted in the mercury contamination, which range in concentrations between 2 to 11 ppm on surface sediments to 21 ppm at depth. The thickness ranges from 40 to 380 centimetres and is about 22 hectares in size. Suggested solutions in 2014 include dredging the sediment and transferring it to the Mission Bay Confined Disposal Facility, capping it, or building a new containment structure. As of October 2018, a steering committee lead by Environment Canada, Transport Canada, Ontario’s environmental ministry and the Thunder Bay Port Authority, along with local government, Indigenous groups, and other stakeholders met to evaluate the remediation options, as well as work out who will lead the remediation.

Update on the Thunder Bay Harbour Clean-up

As reported in TB News Watch, a recommendation on the best method of cleaning up 400,000 cubic metres of contamination sediment in Thunder Bay Harbour is not expected until the end of 2019. There’s enough industrial sediment (mainly pulp and paper sludge), containing mercury and other contaminants, on the bottom of the north harbour to fill 150 Olympic-size swimming pools.

Thunder Bay is located at the northwest corner of Lake Superior and has a population of approximately 110,000. As the largest city in Northwestern Ontario, Thunder Bay is the region’s commercial, administrative and medical centre. It had been known in that past for it pulp and paper mills and as a key shipping port for grain.

Approximate Area of Contaminated Sediment in Thunder Bay Harbour

A new working group that’s revived efforts to manage 400,000 cubic meters of contaminated sediment in Thunder Bay’s north harbour has targeted the end of 2019 for a recommended solution.

Two federal departments, Transport Canada and Environment Canada, co-chair the group which also includes the Ontario environment ministry, the Thunder Bay Port Authority and numerous other local stakeholders.

A new steering committee has been formed to examine three options for remediation presented to the public in 2014. A previous committee formed to look at those options went dormant, necessitating the refresh.

“At this point, we want to further evaluate those [three existing] options and to look at additional options over the next 14 months,” said Roger Santiago, the head of Environment and Climate Change Canada’s sediment remediation group in November of 2018. The group primarily works on cleaning up contaminated patches in the Great Lakes.

A previous steering committee was established 10 years ago, and remediation options were developed, but momentum toward a cleanup or remediation of the contaminated site slowed after that.

That was despite the fact a 2013 risk assessment identified “unacceptable risks” to human health and to plant and animal life in the harbour area:

  • potential risk to people consuming fish (fish consumption advisory in place to mitigate the risk)
  • potential risk to people coming in direct contact with contaminated sediment
  • potential risk to kingfishers from mercury
  • potential risk to sediment-dwelling organisms from total resin acids

Impetus for a cleanup occurred earlier this year after Patty Hajdu, the MP for Thunder Bay-Superior North, raised the issue with her cabinet colleagues, the transport and environment ministers.

There’s enough industrial sediment, containing mercury and other contaminants, on the bottom of the north harbour to fill 150 Olympic-size swimming pools.

The area was classified by a consultant and by federal experts as a Class 1 polluted site using the Federal Aquatic Sites Classification System. Class 1 sites indicate high priority for action.

A Transport Canada spokesperson told Tbnewswatch the working group will spend the next 12 months on technical and environmental studies, and will consult with the general public and with Indigenous groups as it evaluates a short list of management options.

The source of the contamination is historical dumping of pulp and paper mill pollution that resulted in mercury-contaminated paper sludge up to 4 metres thick lying at the bottom of the harbour. The sediment is contaminated with mercury in concentrations that range from 2 to 11 ppm at the surface of the sediment to 21 ppm at depth and ranging in thickness from 40 to 380 centimeters and covering an area of about 22 hectares (54 acres).


Greyish, digested pulp sludge up to 4 metres thick lies across the north harbour bottom (Transport Canada)


Clean-up Options

A 2017 Consultants report stated that the preferred option was to dredge the sediment and transfer it to the Mission Bay Confined Disposal Facility (CDF) at the harbour’s south end.  The dredging and transfer option was estimated to cost $40 million to $50 million, and was considered the best choice based on factors such as environmental effectiveness and budget.  The consultants also looked at other options, including capping and excavation/isolation.

The capping option would consist of placing clean material on top of the contaminated material to contain and isolate the contaminants. A geotextile (a strong fabric barrier) will support the cap material. The budget for this option was estimated at $30-$40 million.

The proposed excavation option would involve building a dam to isolate the contaminated material from the water prior to removal. Once the dam was built, the area would be dewatered so that earth-moving equipment like excavators, loaders and bulldozers can be used to remove the material. It would then be disposed of in a secure landfill. A new on-site Confined Disposal Facility has been recommended or the use of the the existing Confined Disposal Facility at Mission Bay. The excavation option is estimated to cost $80-$90 million.

No matter what is decided upon, the 2017 consultant’s report estimated it would take seven years to complete the clean up. 


Canada’s draft 2019–2022 Federal Sustainable Development Strategy: Impacts on Clean Technology and Brownfield Development

The Government of Canada recently released the Draft 2019–2022 Federal Sustainable Development Strategy for public consultation and tabled the Government’s 2018 Progress Report of the 2016–2019 Federal Sustainable Development Strategy.

The draft Strategy sets out the Government of Canada’s environmental sustainability priorities, establishes goals and targets, and identifies actions that 42 departments and agencies across government will take to reduce greenhouse gas emissions from their operations and advance sustainable development across Canada.

Of interest to professionals in the environmental sector is some of the Government’s goals with respect to the greening of government. For example, the Government is aiming to reduce greenhouse gas emissions from federal government facilities and fleets by 40% by 2030 (with an aspiration to achieve this target by 2025) and 80% below 2005 levels by 2050. It also has the goal to divert at least 75% (by weight) of all non-hazardous operational waste (including plastic waste) by 2030, and divert at least 90% (by weight) of all construction and demolition waste (striving to achieve 100% by 2030), where supported by local infrastructure. The administrative fleet will be comprised of at least 80% zero-emission vehicles by 2030 according to the draft report.

With respect to real property, the proposed actions of the Canadian federal government include the following: (1) All new buildings and major building retrofits will prioritize low-carbon investments based on integrated design principles, and life-cycle and total cost-of-ownership assessments which incorporate shadow carbon pricing; (2) Minimize embodied carbon and the use of harmful materials in construction and renovation; and (3) Departments will adopt and deploy clean technologies and implement procedures to manage building operations and take advantage of programs to improve the environmental performance of their buildings.

For professionals involved in clean technology, the draft report calls for the implement of the Government’s pledge to double federal government investments in clean energy research, development and demonstration from 2015 levels of $387 million to $775 million by 2020.

The 2018 Progress Report shows how the Government of Canada is implementing the 2016–2019 Federal Sustainable Development Strategy, demonstrating that it is on track to meeting many of the commitments laid out in the Strategy. This includes highlighting the leadership role Canada has taken in working toward zero plastic waste and implementing measures to conserve marine areas, as well as actions on climate change.

With respect to clean technology, clean energy, and clean growth, the progress report touts the fact that through three consecutive federal budgets, the Government of Canada has made substantial investments in initiatives to support clean technology, clean energy and clean growth. These commitments include: (1) $2.3 billion in 2017 for clean technology and clean energy research, development, demonstration, adoption, commercialization and use; (2) $1.26 billion in Budget 2017 for the Strategic Innovation Fund; and (3) $4 billion in 2018 in Canada’s research and science infrastructure, much of which helps drive innovation towards a clean growth economy.

The draft Strategy updates the 2016–2019 Federal Sustainable Development Strategy, largely maintaining its aspirational goals while adding targets that reflect new initiatives, updating milestones with new priorities, and strengthening links to the 2030 Agenda for Sustainable Development. In all, 29 medium-term targets support the draft Strategy’s goals, along with 60 short-term milestones and clear action plans.

Among other results, the 2018 Progress Report shows that

  • from 2016 to 2017, greenhouse gas emissions from federal government operations were 28 per cent lower than in 2005 to 2006—more than halfway to the target to reduce emissions from federal buildings and fleets by 40 per cent of 2005 levels by 2030;
  • as of December 2017, close to 8 per cent of Canada’s coastal and marine areas were conserved; and
  • from 2017 to 2018, visits to national parks and marine conservation areas increased by 34 per cent above the 2010 to 2011 baseline levels.

Canadians have the opportunity to provide comments on the draft Strategy until early Spring 2019. For further information: Caroline Thériault, Press Secretary, Office of the Minister of Environment and Climate Change, 613-462-5473.

Technology Simultaneously Measures 71 Elements in Water

Researchers at New York University (NYU) recently developed a new method for simultaneous measurement of 71 inorganic elements in liquids — including groundwater. The method, utilizing sequential inductively coupled plasma-mass spectrometry, makes element testing much faster, more efficient, and more comprehensive than was possible in the past.

The NYU researchers studied samples of liquid from a variety of sources worldwide, including tap water from a New York City suburb, snow from Italy and Croatia, rain from Brazil and Pakistan, lake water from Switzerland and Croatia, and seawater from Japan and Brazil.  Testing each sample results in a distinct elemental pattern, creating a “fingerprint” that can help differentiate between substances or trace a liquid back to its environmental origin.

The method—developed by researchers at the isotope laboratory of NYU College of Dentistry and described in the journal RSC Advances, published by the Royal Society of Chemistry—may be used to explore and understand the distribution of inorganic elements beyond the few that are typically measured. It has implications for fields such as nutrition, ecology and climate science, and environmental health.

An analytical technique called inductively coupled plasma mass spectrometry (ICP-MS) is used to measure elements. Historically, ICP-MS instruments have measured elements sequentially, or one by one, but a new type of ICP‐MS instrument at NYU College of Dentistry and roughly two dozen other places around the world has the potential to measure the complete range of inorganic elements all at once.

NYU ICP-MS

“Because of this new method, our mass spectrometer can simultaneously measure all inorganic elements from lithium to uranium. We’re able to measure the elements in far less time, at far less expense, using far less material,” said Timothy Bromage, professor of biomaterials and of basic science and craniofacial biology at NYU College of Dentistry and the study’s senior author.

This technological advancement may help to fill gaps in our understanding of element distributions and concentrations in substances like water. For instance, the U.S. Environmental Protection Agency monitors and sets maximum concentration limits for 19 elements in drinking water considered to be health risks, yet many elements known to have health consequences—such as lithium or tin—are neither monitored nor regulated.

“The elemental mapping of concentration levels in bottled and tap water could help to increase our understanding of ‘normal’ concentration levels of most elements in water,” said Bromage.

Bromage and his colleagues designed a method for using simultaneous ICP-MS to detect 71 elements of the inorganic spectrum involving a specific set of calibration and internal standards. The method, for which they have a patent pending, routinely detects elements in seconds to several minutes and in samples as small as 1 to 4 milliliters.

In each sample,​ Bromage and ​his team found ​a distinct ​“​fingerprint”​ or elemental ​pattern, ​suggesting that ​samples can be ​recognized and ​differentiated ​by these ​patterns. The ​elemental ​content of ​water, for ​example, ​typically ​reflects its ​natural ​environment, so ​understanding ​the elemental ​composition can ​tell us if ​water had its ​origins from a ​source with ​volcanic rock ​versus ​limestone, an ​alkaline rock.

Business Opportunities for Environmental Research and Development

The United States Department of Defense’s Strategic Environmental Research and Development Program (SERDP) is seeking environmental research and development proposals for funding beginning in FY 2020. Projects will be selected through a competitive process. The Core Solicitation provides funding opportunities for basic and applied research and advanced technology development. Core projects vary in cost and duration consistent with the scope of the work proposed.

The Statements of Need (SON) referenced by this solicitation request proposals related to the SERDP program areas of Environmental Restoration (ER), Munitions Response (MR), Resource Conservation and Resiliency (RC), and Weapons Systems and Platforms (WP).

The SERDP Exploratory Development (SEED) Solicitation provides funding opportunities for work that will investigate innovative environmental approaches that entail high technical risk or require supporting data to provide proof of concept.

Funding is limited to not more than $200,000 and projects are approximately one year in duration. This year, SERDP is requesting SEED proposals for the Munitions Response and Weapons Systems and Platforms program areas. All Core pre-proposals are due January 8, 2019. SEED proposals are due March 5, 2019. For more information and application instructions, see https://www.serdp-estcp.org/Funding-Opportunities/SERDP-Solicitations.

Market Report on VOC Detectors

VOC Detector Market

QY Research recently published the Global Market Study VOC Detector Market Provide Forecast Report 2018 – 2025.  The report presents a detailed analysis of the VOC Detector market which researched industry situations, market Size, growth and demands, VOC Detector market outlook, business strategies utilized, competitive analysis by VOC Detector Market Players, Deployment Models, Opportunities, Future Roadmap, Value Chain, and Major Player Profiles. The report also presents forecasts for VOC Detector investments from 2018 till 2025.

United States is the largest Manufaturer of VOC Detector Market and consumption region in the world, Europe also play important roles in global VOC Detector market while China is fastest growing region. The 126 page VOC Detector report provides tables and figures and analysis the VOC Detector market. The report gives a visual, one-stop breakdown of the leading products, submarkets and market leader’s market revenue forecast as well as analysis and prediction of the VOC Detector market to 2025.

Geographically, this report splits the global market into several key Regions, with sales (K Units), revenue (Million USD), market share and growth rate of VOC Detector for these regions, from 2013 to 2025 (forecast), covering United States, China, Europe, Japan, Southeast Asia, and India.

The report provides an analysis of the global VOC Detector market competition by top manufacturers/players, with VOC Detector sales volume, Price (USD/Unit), revenue (Million USD) and market share for each manufacturer/player.  The top players include the following: REA Systems; Ion Science; Thermo Fisher; Skyeaglee; Omega; and E Instruments.

The report provides an overview of the global market on the basis of product.  This report displays the production, revenue, price, market share and growth rate of each type, primarily split into the following types of detectors:
PID and Metal-oxide Semiconductor.   The report also breaks down the global market based on application as follows:  Environmental Site Surveying; Industrial Hygiene; and HazMat/Homeland Security.

RAE Systems Gas Detector