SJC Clarifies Statute of Limitations for Contaminated Property Damage Claims but Raises Questions of Application

by Marc J. GoldsteinBeveridge & Diamond PC

Plaintiffs with property damage claims under the Massachusetts cleanup law have more time to bring their claim than might be expected under the three-year statute of limitations according to a recent ruling by the top Massachusetts court.  The Supreme Judicial Court ruled that the statute of limitations begins running when the plaintiff knows that there is damage to the property that is “permanent” and who is responsible for the damage, pointing to the phases of investigation and remediation in Massachusetts’ regulatory scheme as signposts for when a plaintiff should have that knowledge.  Grand Manor Condominium Assoc. v. City of Lowell, 478 Mass. 682 (2018).  However, the Court left considerable uncertainty about when the statute of limitations might begin for arguably more temporary property damages such as lost rent.

In this Google image, the Grand Manor condominium complex is visible at the center-right.

In this case, the City of Lowell owned property that it used first as a quarry and then as a landfill in the 1940s and 50s before selling the property in the 1980s to a developer.  The developer constructed a condominium project on the site and created a condominium association soon thereafter. As part of work to install a new drainage system in 2008, the contractor discovered discolored soil and debris in the ground.  Subsequent sampling indicated that the soil was contaminated and that a release of hazardous materials had occurred.  The condo association  investigated in early 2009, and MassDEP issued notices of responsibility to both the condo association as well as the city in May 2009.  The city assumed responsibility for the cleanup and worked the site through the state regulatory process known as the Massachusetts Contingency Plan (MCP).  In the city’s MCP Phase II and III reports in June 2012, it concluded that the contamination was from the city’s landfill operations, that it would not be feasible to clean up the contamination, and proposed a pavement cap and a deed restriction.

The condo association and many of its members filed suit in October 2012 for response costs under Chapter 21E, § 4 and damage to their property under G.L. c. 21E, § 5(a)(iii).  At trial, the jury awarded the plaintiffs response costs under Section 4 but found that the plaintiffs had failed to prove that their property damage claim was brought within the three-year statute of limitations for such claims under G.L. c. 21E, § 11A.  The Supreme Judicial Court took the case on direct appellate review.

Section 11A provides that an action to recover damage to real property “be commenced within three years after the date that the person seeking recovery first suffers the damage or within three years after the date the person seeking recovery of such damage discovers or reasonably should have discovered that the person against whom the action is being brought is a person liable…”  Quoting Taygeta Corp. v. Varian Assocs., Inc., 436 Mass. 217, 226 (2002), the Court summarized this as a requirement that the claim must be brought within three years of when plaintiff “discovers or reasonably should have discovered [1] the damage, and [2] the cause of the damage.”

The Court quickly agreed that “the damage” referred to in Section 11A was, for these purposes, the property damages of Section 5 and moved on to the plaintiffs’ contention that the limitations period should not run until they discovered or reasonably should have discovered that the damage was “permanent” or, in other words, not reasonably curable.  Until that time, they argued, they could not know if they had a property damage claim because the site could be fully remediated.

The Court examined the application of the statute of limitations in the context of the statutory scheme for investigating and remediating sites in Massachusetts.  The Court found that the primary purpose of Chapter 21E is to clean up environmental contamination and to ensure responsible parties pay for the costs of that cleanup.  As a result, the statute prioritizes “performance and financing of cleanup efforts, and then considers the calculation of property damage that cannot be cured by remediation and remediation cost recovery.”

In interpreting the statute of limitations, the Court crystalized the question as “whether the word ‘damage’ in § 11A(4) refers specifically to damage under § 5, that is, damage that cannot be cured and compensated by the cleanup and cleanup cost recovery processes defined by the MCP and §§ 4 and 4A, such that the limitations period does not begin to run until the plaintiff knows there is residual damage not subject to remediation and compensation.”  In order to have knowledge that a plaintiff has suffered damage that is not curable by the MCP remediation process, the MCP process must have run sufficiently to know that § 5 damages exist – that there is contamination that will not be addressed through remediation leaving the property at a diminished value.  Since the liable party is required to determine the extent of the damage in Phase II and evaluate available remedies in Phase III of the MCP, as the Court noted, “[i]t would make little sense to require the plaintiff to independently determine whether residual property damage exists prior to the completion of these reports.” As a result, the Court concluded that the statute of limitations did not start to run until the plaintiff became aware that the site would not be fully remediated in the Phase II and III reports in June 2012 months before they filed their lawsuit.  Exactly what constitutes full remediation remains to explored in further cases, as the range of outcomes from achieving background conditions, implementing deed restrictions, reaching temporary solutions, or even leaving just a few molecules of contamination left behind could impact this analysis.

The Court contended that this interpretation of the statute of limitations provides a “prescribed and predictable period of time” within which claims would be time barred, given that there are timetables associated with the production and submission of MCP Phase II and III reports.  Under normal circumstances, the Court expected that a plaintiff will know it has a claim within five years of notifying MassDEP of contamination.

Despite the Court’s pronouncement that it had provided predictability for these types of claims, the statute of limitations for non-permanent property damages, such as lost rental value, or for sites where there is a long-term temporary solution in place, remain uncertain.  Lawyers and clients evaluating how and when to bring claims for temporary and permanent damages will need to carefully evaluate a range of potential options in pursuing a preferred single case for property damage without unacceptable risk that an uncertain statute of limitation may have run.

The article was first published at the Beveridge & Diamond website.

Beveridge & Diamond’s Massachusetts office assists parties at all phases of contaminated sites, guiding clients through the MCP investigation and remediation process and prosecuting and defending claims in court for cost recovery and property damage.  For more information about this practice, contact Marc Goldstein or Jeanine Grachuk.

About the Author

Marc Goldstein helps clients resolve environmental and land use disputes and to develop residential, commercial, and industrial projects. He serves as the Managing Principal of Beveridge & Diamond’s Wellesley, Massachusetts office and the Chair of the firm’s Technology Committee.

Marc provides practical, cost-effective advice to clients with environmental contamination issues, whether those clients are cleaning up hazardous materials and seeking contribution from previous owners or adjacent landowners or facing claims under Chapter 21E or Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for their alleged role in contamination.

U.S. Environmental Industry generates $388 billion in revenues in 2017

The U.S. environmental industry generated revenues of $388 billion in 2017, up from $370 million in 2016, according to preliminary estimates by Environmental Business International Inc. (EBI), publisher of Environmental Business Journal (EBJ). The environmental industry’s annual growth rate of 4.8% in 2017 represents a steady increase from 3.6% in 2016 and 2.1% in 2015.

Every year, EBJ’s Annual Industry Overview presents estimates and forecasts for 13 business segments, in addition to offering perspective on how the environmental industry is responding to changing macroeconomic conditions and regulatory and policy trends. This year’s summary reviews conditions one year into the Trump Administration.

To purchase EBJ’s Annual Industry Overview and receive statistical summaries of the industry in 13 segments with multiple charts featuring revenues, growth, number of companies, forecasts, growth factors and revenue breakdowns by client, media and function, visit the EBI website.

IATA rolls out DG AutoCheck to enhance safety in dangerous goods transport

The International Air Transport Association (IATA) recently launched Dangerous Goods AutoCheck (DG AutoCheck), a new innovative solution for the air cargo industry, which will enhance safety and improve efficiency in the transport of dangerous goods by air, and support the industry’s goal of a fully digitised supply chain.

“The air transport industry handles over 1.25 million dangerous goods shipments transported every year. With the air cargo growth forecasted at 4.9 percent every year over the next five years, the number is expected to rise significantly. To ensure that the air cargo industry is ready to benefit from this growth, it needs to adopt modern and harmonised standards that will facilitate safe, secure and efficient operations, particularly in relations to carriage of dangerous goods. DG AutoCheck is a significant step towards achieving this goal,” said Nick Careen, senior vice president, airport, passenger, cargo and security, IATA.

FACILITATING ACCEPTANCE CHECKS

DG AutoCheck is a digital solution that allows the air cargo supply chain to check the compliance of the Shipper’s Declaration for Dangerous Goods (DGD) against all relevant rules and regulations contained in the IATA Dangerous Goods Regulations.

The tool enables electronic consignment data to be received directly, which supports the digitisation of the cargo supply chain. Optical Character Recognition (OCR) technology also transforms a paper DGD into electronic data. This data is then processed and verified automatically using the XML data version of the DGR.

DG AutoCheck also facilitates a ground handlers or airline’s decision to accept or reject a shipment during the physical inspection stage, by providing a pictorial representation of the package, with the marking and labelling required for air transport.

“The DGR lists over 3,000 entries for dangerous goods. Each one must comply with the DGR when shipped. The paper DGR consists of 1,100 pages. Manually checking each shipper’s declaration is a complex and time consuming task. Automation with DG AutoCheck offers us a giant step forward. The cargo supply chain will benefit from greater efficiency, streamlined processes and enhanced safety,” said David Brennan, assistant director, cargo safety and standards, IATA.

INDUSTRY COLLABORATION

Collaboration is critical in driving industry transformation, especially for a business with such a complex supply chain. DG AutoCheck is a good example of effective industry partnerships.

An industry working group made up of more than twenty global organisations supported the development of DG AutoCheck. The group comprises airlines, freight forwarders, ground handlers and express integrators, including Air France-KLM CargoSwissportPanalpina and DHL Express.

“The air cargo supply chain is currently undergoing a major digital evolution. Collaboration across the industry is essential if the goal of a digitised electronic end-to-end messaging platform is to be realised. There is no time to lose as there is a growing demand from our customers for efficiency of electronic documentation throughout the supply chain,” said Nick Careen, senior vice president, airport, passenger, cargo and security, IATA.

 

U.S. DOD Rapid Innovation Fund for Innovative Technology in Emergency Response Tools

The United States Department of Defence (U.S. DoD) Rapid Innovation Fund facilitates the rapid insertion of innovative technologies into military systems or programs that meet critical national security needs. DoD seeks mature prototypes for final development, testing, evaluation, and integration. These opportunities are advertised under NAICS codes 541714 and 541715. Awardees may receive up to $3 million in funding and will have up to two years to perform the work. The two phases of source selection are (1) white paper submission and (2) invited proposal submission. The window of opportunity for submitting white papers expires on April 12, 2018 (due by 3:00 PM ET).
Among the numerous R&D opportunities described in the BAA are topics relevant to the development of environmental monitoring and emergency response tools:

  • Handheld automated post-blast explosive analysis device (USDR&E-18-BAA-RIF-RRTO-0001). Handheld automated detection and characterization of explosive residue collected on-scene after an explosion.
  • Handheld networked radiation detection, indication and computation (RADIAC) (DTRA-17-BAA-RIF-0004). A lighter, more compact system for integration into CBBNE situational awareness software architecture of Mobile Field Kit and Tactical Assault Kit.
  • 3-D scene data fusion for rapid radiation mapping/characterization (DTRA-17-BAA-RIF-0005).
  • Immediate decontamination (CBD-18-BAA-RIF-0001). A spray-on decontaminant that can be applied in a single step in ~15 minutes on hardened military equipment.
  • Hyperspectral aerial cueing for chemical, biological, radiological, nuclear and explosive (CBRNE) mobile operations (PACOM-18-BAA-RIF-0001). Real-time detection via drone.
  • Mobile automated object identification and text translation for lab equipment (DTRA-17-BAA-RIF-0003). A tool to help users recognize equipment, chemicals, and potentially hazardous material in real time.

https://www.fbo.gov/spg/ODA/WHS/REF/HQ0034-18-BAA-RIF-0001A/listing.html
[NOTE: This BAA was also issued as HQ0034-18-BAA-RIF-0001B.]

Using GPS trackers to fight toxic soil dumping

As reported by the CBC News and the Montreal Gazette, the Province of Quebec and the City of Montreal are joining forces to try to crack down on a possible link between organized crime and the dumping of contaminated soil on agricultural land.

The solution? A GPS system that can track where toxic soil is — and isn’t — being dumped.

According to the province, there are about two million metric tonnes of contaminated soil to be disposed of every year.

Toxic soil is supposed to be dumped on designated sites at treatment centres. But the Sûreté du Québec has confirmed it believes members of organized crime have been dumping soil from contaminated excavation sites onto farmland.

Quebec Provincial police confirm they are investigating a possible link between organized crime and the dumping of contaminated soil.

“It’s a constant battle. The city and all municipalities have to be very vigilant about any types of possible corruption,” said Montreal Mayor Valérie Plante.

“What we are talking about today supports a solution, but again, we always have to be proactive.”

The new pilot project, called Traces Québec, is set to launch in May. Companies would have to register for the web platform, which can track in real time where soil is being transported — from the time it leaves a contaminated site to the time it’s disposed of.

Some environmentalists say they’re concerned about the impact the toxic soil has had on agricultural land where it’s been dumped. They’re also uncertain about how a computerized tracking system will put an end to corruption and collusion.

“Right now, there’s no environmental police force in Quebec so there have been investigations into these toxic soils being dumped but unfortunately nobody’s been held accountable yet,” said Alex Tyrrell, leader of the Quebec Green Party.

“There’s really a lack of a coherent strategy for how Quebec is going to decontaminate all of these different toxic sites all over the province. There’s no announcement of any new money.”

The city and the province say this is a first step at addressing the issue and more announcements will be on the way in the coming months.

The pilot project — a joint effort with the city of Montreal — will test a system, known as Traces Québec, that uses GPS and other technologies to track contaminated soil. The first test case will involve a city plan to turn a former municipal yard in Outremont into a 1.7-hectare park. Work is to start in the fall.  All bidders on the project will have to agree to use the Traces Québec system.

Using the system, an official cargo document is created that includes the soil’s origin and destination and its level of contamination. Trucks are equipped with GPS chips that allow officials to trace the route from pickup to drop-off.

Mayor Valérie Plante said the pilot project is “a concrete response to a concrete problem.”

She said she wants to protect construction workers and residents by ensuring contaminated soil is disposed of properly. The city also wants to make sure the money it spends on decontamination is going to companies that disposed of soil safely and legally.

“Municipalities have to be very vigilant about any types of possible corruption,” she said. “We know there are cracks in the system and some people have decided to use them and it’s not acceptable.”

Plante said Montreal will study the results of the pilot project before deciding whether to make the system mandatory on all city projects.

The Traces Québec system was developed by Réseau Environnement, a non-profit group that represents 2,700 environmental experts.

Pierre Lacroix, president of the group, said today some scofflaws dispose of contaminated soil illegally at a very low cost by producing false documents and colluding with other companies to circumvent laws.

He said the Traces Québec system was tested on a few construction sites to ensure it is robust and can’t be circumvented. “We will have the truck’s licence plate number, there will be GPS tracking, trucks will be weighed,” Lacroix said.

“If the truck, for example, doesn’t take the agreed-upon route, the software will send an alert and we’ll be able to say, ‘Why did you drive that extra kilometre and why did it take you an extra 15 minutes to reach your destination?’”

Organized crime can be creative in finding new ways to avoid detection and Lacroix admitted “no system is perfect.”

But he noted that “at the moment, it’s anything goes, there are no controls. Technology today can help take big, big, big steps” toward thwarting criminals.

With files from CBC reporter Sudha Krishnan

How the GPS tracking system will work

Contaminated sites could pose issue for Saskatoon’s transit plan

As reported in the Phil Tank in the Saskatoon Star Phoenix, the city of Saskatoon has tested the soil at several locations where transit stations are planned for the bus rapid transit (BRT) system. The results of the tests will not be known until later this month, but Mayor Charlie Clark says contaminated sites, like former gas stations, pose a big issue for Canadian cities.

The testing took place along the proposed BRT red line, which is expected to run on 22nd Street on the west side of the river and on Eighth Street on the east side.

“Brownfields (contaminated sites) along some of these major streets are a real problem,” Clark told reporters Tuesday at city hall. “We have a lot of gas stations that have been abandoned, left there and the owners are just sitting on them and not allowing them to be sold and redeveloped.”

The CP railway crossing on 22nd Street, one of the main routes of the BRT system. (Google Maps)

Clark, who was promoting an event to gather residents’ input on the city’s various growth plans, said he would like to see clearer rules from the province and the federal government on contaminated sites.

The City of Saskatoon has limited tools to force sites to be sold or redeveloped or to compel owners to clean up contamination, he said.

“We frankly don’t think the taxpayers of Saskatoon should have to pay to clean up contaminated sites where somebody was operating a gas station or a fuel distribution site for many years, generating a profit off of it, and then leaving it as a barren and wasted piece of land,” Clark said.

The city’s brownfield renewal strategy is among a number of different planks in its overall growth strategy, which was featured at a community open house in early March.

Brownfield Renewal Strategy

Saskatoon’s Brownfield Renewal Srategy (“BRS”) states that abandoned, vacant, derelict, underutilized properties shouldn’t stop revitalization.  The strategy supports redevelopment of brownfield sites to maximize their potential and revitalize the main transportation corridors within the City.  The goal of the BRS is to create environmental guidance manuals, provide advisory services, and implement incentive programs to encourage brownfield redevelopment.

The City of Saskatoon sees the BRS as requirement for achieving the City’s target of achieving 50% growth through infill.

The BRS will create a suite of tools and programs designed to assist prospective developers and property owners with the environmental requirements associated with impacted and potentially impacted brownfields.

Mayor Clark noted Saskatoon and its surrounding region has been identified as the fastest growing metropolitan area in Canada, with 250,000 additional residents anticipated in the next few decades.

Lesley Anderson, the director of planning and development with the City of Saskatoon, talks renewal strategy

Ontario Announces Cleantech Strategy & Support for Cleantech Companies

Article by Richard CorleySophie Langlois and Catherine Lyons

Goodmans LLP

Recently, the Ontario Minister of Research, Innovation and Science, Reza Moridi, launched Ontario’s Cleantech Strategy (the “Cleantech Strategy“) which aims to catalyze the growth of Ontario’s clean technology sector to support sales into a global market which is expected to grow to $2.5 trillion by 2022. The Cleantech Strategy is aligned with Ontario’s five-year Climate Change Action Plan (CCAP) to fight climate change, reduce greenhouse gas (GHG) pollution, and drive the transition to a low-carbon economy.  It is also aligned with Ontario’s Business Growth Initiative (BGI), which is, among other things, assisting innovative companies to scale up.

Purpose of the Cleantech Strategy

The Cleantech Strategy bolsters Ontario’s commitment to support the development of new, globally competitive low-carbon technologies that will contribute to fighting climate change and to meeting Ontario’s GHG pollution reduction targets of 15% below 1990 levels by 2020, 37% by 2030 and 80% by 2050. As Minister Moridi explained:

By helping our cleantech companies get ready to scale – and helping them to connect to early customers here in Ontario – Ontario is supporting innovation and reducing emissions and environmental impact across industries. Over the longer term, we expect to see more scaled-up Ontario cleantech companies recognized as North American leaders.

Ontario has the largest share of cleantech companies in Canada and the Cleantech Strategy further supports the province’s leadership in GHG pollution reduction through the development and scaling of cleantech solutions.

Principal Elements of the Cleantech Strategy

Based on Ontario’s strengths in cleantech and global demand, the Cleantech Strategy prioritizes the following four cleantech sub-sectors: energy generation and storage, energy infrastructure, bio-products and bio-chemicals, and water and wastewater.

The Cleantech Strategy has four interrelated pillars through which the province intends to meet its objective of helping cleantech companies scale up and meet global demand:

  1. Venture and scale readiness – strengthening opportunities for in-house research and development, strengthening entrepreneur knowledge of key global markets, reducing regulatory uncertainty to facilitate access to capital, and attracting and developing a strong pool of sales, marketing and management talent
  2. Access to capital – increasing access to scaling capital, providing guidance on available provincial and federal cleantech funding, and simplifying access to such capital
  3. Regulatory modernization – streamlining the regulatory environment where possible to reduce barriers for cleantech market entry, supporting performance-based standards and approvals processes, and supporting the development of harmonized industry standards
  4. Adoption and procurement – increasing demonstration and pilot opportunities to de-risk and validate new technologies, and addressing prescriptive and risk-averse procurement practices

Initiatives funded through Ontario’s carbon market as part of the Cleantech Strategy include the Global Market Acceleration Fund (GMAF) and the Green Focus on Innovation and Technology (GreenFIT).

The Global Market Acceleration Fund

The GMAF will help companies lower the risk associated with expanding production of a proven clean technology.  The fund will also assist companies with the cost of scaling up inventory, distribution and sales to domestic and global markets.  The GMAF can provide between $2 million and$5 million of funding to Ontario-based companies with promising GHG reduction technologies and scale-up and export potential.  To receive funding, these companies must be able to demonstrate funding commitments for at least 50% of the eligible project costs. A total of $27 million has been allotted to the GMAF.

Green Focus on Innovation and Technology

Through the GreenFIT program, Ontario will commit $10 million towards demonstration projects of new technologies and services. Early adoption of these new technologies and services will benefit both the adopting public sector institutions with support for their emissions reductions and participating companies with opportunities for validation and credibility for their products.

The content of this article does not constitute legal advice and should not be relied on in that way. Specific advice should be sought about your specific circumstances.

_________________

About the Authors

Richard Corley is a partner at Goodmans LLP and leads the firm’s Cleantech Practice Group.

Sophie Langlois is an associate at Goodmans LLP.  She practices in the area of corporate and securities law and mergers and acquisitions.

Catherine Lyons is a partner at Goodmans LLP.  She dedicates her practice to representing both private and public sector clients at the intersection of municipal and environmental law.

 

This article was first published on the Goodmans LLP website.

Recycling end-of-life materials may be perpetuating toxic chemicals in new products

A researcher from the Canadian Environmental Law Association and paralegal, Fe de Leon, recently co-published a paper with HEJSupport International Co-Director Olga Speranskaya to bring public attention to toxic chemicals that appear in new products made out of recycled materials.  The authors of the paper argue that many countries have made investments into achieving progress towards a circular economy, but little or no attention is paid on toxic chemicals that appear in new products made out of recycled materials. The paper cites a growing body of evidence of how a circular economy fails to address concerns regarding toxic chemicals in products.

Fe de Leon, Researcher and Paralegal, CELA

In the paper, the authors cite a 2017 study prepared by IPEN, an environmental activist organization that focuses on synthetic chemicals, which revealed elevated concentrations of globally targeted toxic flame retardants in plastic toys.  The IPEN study claimed to have found elevated concentrations of toxic persistent organic pollutants (POPs) in samples of plastic toys purchased in different stores in Canada and other 25 countries globally.  The study further stated that the levels of some chemicals were more than five times higher than recommended international limits.  These chemicals include PBDEs (polybrominated diphenyl ethers) such as octabromodiphenyl ether (OctaBDE), decabromodiphenyl ether (DecaBDE); and SCCPs (short chain chlorinated paraffins).  They are listed under the Stockholm Convention on Persistent Organic Pollutants and are internationally banned or restricted due to their hazardous characteristics.  They all are persistent, highly toxic, travel long distances and build up in the food chain.  However, their presence in new products, although they are banned or restricted, opens up the discussion of a problem regarding recycling as a key component of a circular economy.

The paper concludes that product recycling and a focus on a circular economy should be encouraged.  However, material flows should be free from hazardous chemicals, at the minimum those chemicals which have already been regulated under the international treaties.

Olga Speranskaya, HEJSupport International Co-Director, IPEN CoChair

CHAR Announces Approval of Funding Grant For CleanFyre Biocoal

CHAR Technologies Ltd. (the “Corporation”) (TSXV:YES) recently announced that it has been approved for a grant totalling $1,062,385 provided by the Government of Ontario through the Low Carbon Innovation Fund (“LCIF”).  The grant is in support of CHAR’s CleanFyre biocoal project, with participation from ArcelorMittal Dofasco (“Dofasco”), Canada’s largest flat roll steel producer and a lead user of CleanFyre within the project, Walker Environmental (“Walker”) as a feedstock supplier and BioLine Corporation (“Bioline”) as a feedstock pre-processor.

“This grant will allow CHAR to work with innovative and progressive companies, including Dofasco, Walker and Bioline, to further develop CleanFyre, a carbon neutral, sustainable, solid biofuel, that meets the strict requirements of the steelmaking industry,” said Andrew White, CEO of CHAR.  “The project will culminate with a 20-tonne trial in an operational blast furnace at Dofasco to prove CleanFyre’s applicability within the steel industry.”

CleanFyre is a carbon neutral solid biofuel, and through its implementation will allow users to significantly reduce their GHG emissions.  Project funding will be disbursed 50% in April, followed by four additional payments on successful milestone completion.

About CHAR

CHAR Technologies Ltd is a cleantech development and services company, specializing in biocarbon development (activated charcoal ‘SulfaCHAR’ and solid biofuel ‘CleanFyre’) and custom equipment for industrial air and water treatment, and providing services in environmental management, site investigation & remediation, engineering, and resource efficiency.

About Low Carbon Innovation Fund

The Low Carbon Innovation Fund is a fund to help researchers, entrepreneurs and companies create and commercialize new, globally competitive, low-carbon technologies that will help Ontario meet its GHG emissions reductions targets.  The Low Carbon Innovation Fund is part of Ontario’s Climate Change Action Plan and is funded by proceeds from the province’s carbon market.

Forward-Looking Statements

Statements contained in this press release contain “forward-looking information” within the meaning of Canadian securities laws.  When considering these forward-looking statements, you should keep in mind the risk factors and other cautionary statements in CHAR’s MD&A dated February 26th, 2018 and available under CHAR’s profile on www.sedar.com. Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

For further information please contact:

Andrew White
Chief Executive Officer
CHAR Technologies Ltd.
e-mail: andrew.white@chartechnologies.com
tel: 647-968-5347

Marie Verdun
Manager, Corporate Affairs
ArcelorMittal Dofasco
e-mail: marie.verdun@arcelormittal.com
tel: 905-548-7200 x2066

ArcelorMittal Dofasco, Hamilton, Ontario

Applied research is reclaiming contaminated urban industrial sites

As reported by Cody McKay in the Vancouver Sun, there is outstanding discovery research occurring at universities across Canada. Unfortunately, a significant proportion of this research doesn’t translate into commercial application.  Consecutive Canadian governments have attempted to tackle this challenge, focusing research dollars on particular aspects of the research-innovation ecosystem.  This has left those not in the funding limelight to cry protest, plead neglect or worse, be under-valued.  Yet the reality is that we need to support all types of research.

Canada needs researchers devoted to fundamental science, but also those who can take existing research knowledge and apply it to solve an identified challenge for society or for industry.

Enter collaborations with applied research.  And a Canadian-made solution.

There are tens of thousands of brownfield sites scattered across Canada — many of them in urban locations. “Brownfields” are those abandoned industrial sites, such as old gas stations, that can’t be redeveloped because of the presence of hazardous substances, pollutants or contaminants in the soil. As a result, they remain empty, barren eyesores for communities, financial drains for their landowners who can’t repurpose the land and environmental liabilities for future generations.

Over the past decade, a collaboration between Federated Co-operatives Limited, a Western Canada energy solutions company which owns a number of brownfield sites, and the University of Saskatchewan (U of S) developed a variety of methods to stimulate the bacteria in the soil to consume the petroleum-based contaminants more rapidly.

This U of S remediation method is faster than the natural attenuation process, which can take decades.  The U of S method has the potential to remediate a contaminated site in a northern climate in only a few months.  It is also less invasive and potentially more cost-effective than the “dig-and-dump” approach that is popular in some regions of Canada.  “Dig-and-dump” refers to excavating all the contaminated soil at site, transporting it to a landfill for disposal, and filling in the excavation with clean fill.  The research team provided an estimated cost savings on remediation of up to 50 percent, depending on the extent of contamination and the cost of dig-and-dump.  With an estimated 30,000 contaminated gas station sites in Canada, halving remediation costs represents a total potential savings of approximately $7.5 billion.

Collaborating with the University of Saskatchewan and Federated Co-op, and building on their earlier research, Dr. Paolo Mussone, an applied research chair in bio-industrial and chemical process engineering, and his colleagues at the Northern Alberta Institute of Technology (NAIT) Centre for Sensors and System Integration built sensors to monitor the bacteria and track how quickly the pollutants in the soil were degrading.  The team experimented with the technique and the sensors at an old fuel storage site owned by Federated Co-op in Saskatoon that had been leaking for 20 years.  They were able to use the technology to monitor the bacteria’s consumption and adjust the stimuli that increased this consumption in real time.

This applied research significantly shortened the time it took to clean the site, and only a few years later, the land is now home to a commercial retail space.

Dr. Mussone’s work is focused on building prototypes that use emerging nano- and biotechnologies.  The goal of this applied research is to help the energy sector improve operational efficiencies, reduce emissions and accelerate environmental remediation.  So where some would see the scars of industrial activity on the landscape, Dr. Mussone sees an opportunity to put his research into action.

Eventually, Dr. Mussone hopes to see the technology applied across Western Canada, where similar sites continue to hinder community-building efforts.

The science research undertaken by the University of Saskatchewan and Federated Co-op, and the collaborative applied research undertaken by NAIT, has led to a sustainable, commercial solution. Polytechnic institutions excel at this type of research translation.

Sometimes it is far too easy the federal government to forget about the impact of research, only focusing instead on the supply for new science dollars.  Across the country, universities, polytechnics and community colleges are each undertaking research that could have immediate impact, or future benefit.

Rather than pitting these fundamentally different models of research against one another, Canadians should celebrate the diversity of strengths that exist in our country.

Canada has excellent applied research opportunities that can be harnessed for economic impact.  Recognizing and supporting all types of research, and more significantly, fostering research collaboration amongst institutions with different research mandates and missions, is the surest and most positive way to build a sustainable science and innovation ecosystem for Canada.

Reclaiming contaminated land is NAIT Applied Research Chair Dr. Paolo Mussone’s mission