Canada to Commits Major Funding to Scientific Research on Oil Spill Response

The Government of Canada recently announced that it was committing $4.1 million to six international organizations to fund research projects that will help improve protocols and decision-making to minimize the environmental impacts of oil spills.

The recipients include: Commonwealth Scientific and Industrial Research Organisation; Johns Hopkins University; New Jersey Institute of Technology; SINTEF Ocean; Texas A&M University; and Woods Hole Oceanographic Institution.

Examples of the projects that will be founded included the following:

  • The Woods Hole Oceanographic Institution in Woods Hole, Massachusetts is receiving $638,000 to conduct a three-year study to quantify the effect of oil photochemical oxidation on the performance of chemical herders in Canadian waters; and
  • Johns Hopkins University in Baltimore, Maryland is receiving $760,000 to conduct a four-year study on the effects of crude oil properties, dispersants, and weathering on the breakup of plumes and slicks.

These projects are part of the $45.5 million Multi-Partner Research Initiative, announced last year to leverage collaboration among oil spill experts in Canada and abroad to ensure we have the capability to provide the best scientific advice and tools to respond to oil spills in our waters.

A total of 35 Canadian and international projects will focus on a wide range of innovative strategies and technologies to aid in oil spill response. Under this initiative, researchers will investigate computer modeling to predict the movement and fate of spilled oil, the use of chemical dispersants and herders, the efficiency of in-situ (or onsite) burning of oil spilled at sea and the potential of bio-based agents to disperse oil through biodegradation.

The Multi-Partner Research Initiative will support a variety of different but interrelated research projects on alternative response measures for oil spills while facilitating partnerships among the best researchers across Canada and around the world. These collaborative efforts will improve our knowledge of how oil spills behave, how best to contain them and clean them up, and how to minimize their environmental impacts.

Leaking Sewers Cost City 50% of Dry Cleaner Site Cleanup Costs

Written by John A. McKinney Jr., Chiesa Shahinian & Giantomasi PC

Are you in a case where an on-site and off-site groundwater plume of dry-cleaning solution (perchloroethylene or PCE) or other hazardous substance is intersected by sewers through which the used and disposed solution flowed?  If so, the case of Mission Linen Supply v. City of Visalia (2019 WL 446358) bears your close review.

Based on the facts and expert testimony adduced at the bench trial, the court determined that: 1) the sewers were installed by the City below general industry standards; 2) the City sewers had numerous defects including holes and broken pipes, cracks, separated joints, missing portions of pipes, root intrusion and other conditions; and, 3) PCE was released into the environment as a result of these defects.

Pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (42 U.S.C. § 9601 et seq.), the two dry cleaners who operated at the site and the City were found liable.  In allocating the future cleanup costs, the court determined the equitable basis for allocation was the plume itself.  The prior dry cleaners were responsible for the on-site costs and the City was responsible for the off-site costs “because the City’s defective/leaking pipes transported and spread the PCE beyond the property boundaries.”   50% of future costs were assigned to the City.

A review of this case’s Findings of Fact show what expert testimony and evidence is necessary to reach the result reached by this court.  The case is also a warning to municipalities with sewer lines intersecting cleanup sites or what could become cleanup sites.  Do not fail to regularly and properly maintain your sewer systems.


This article has been republished with the permission of the author. It was first published on CSG’s Environmental Law Blog.

About the Author

John A. McKenney Jr. has been a frequent speaker at conferences and continuing legal education programs. For 18 years, John was on the faculty of Seton Hall University School of Law as an Adjunct Professor where he taught New Jersey Environmental Law. He also served as moderator of the ABA satellite seminar on Hazardous Waste and Superfund.

John is a co-editor of the ABA publication, CERCLA Enforcement – A Practitioner’s Compendium of Essential EPA Guidance and Policy Documents and co-authored the Generators’ Obligations chapter of the ABA’s RCRA Practice Manual. The standard form group agreement used at many remedial sites around the nation is based on a version he developed for The Information Network for Superfund Settlements.

Amendments to the Canada Shipping Act, 2001 and Marine Liability Act

by Joanna Dawson, McMillan LLP

On December 13, 2018, Bill C-86, A second Act to implement certain provisions of the budget tabled in Parliament on February 27, 2018 and other measures, otherwise known as the Budget Implementation Act was given royal assent.  This Bill, which was first introduced on October 29, 2018, predominantly pertains to amendments of budget-related legislation, but also proposes significant amendments to both the Canada Shipping Act, 2001(“CSA”) and the Marine Liability Act (“MLA”). The amendments to the CSA were introduced to allow the federal government to regulate for environmental reasons and specifically “to deliver on commitments made under the Oceans Protection Plan to enable the Government to respond to marine pollution incidents faster and more effectively, and to better protect marine ecosystems and habitats”. The amendments provide significant new powers and authority that potentially change the marine safety and environmental protection framework in Canada.

Canada Shipping Act, 2001

With a focus on marine environmental protection, environmental response, enhanced enforcement and support for marine research, the amendments to the CSA include the following:

  • The amended Section 10(1)(c) sets out that the Minister of Transport or the Minister of Fisheries and Oceans may enter into agreements or arrangements respecting the administration or enforcement of any provision of this Act or the regulations and authorize any person or organization – including a provincial government, local authority, council or other entity authorized to act on behalf of an Indigenous group – with whom or which an agreement or arrangement is entered into to exercise the powers or perform the duties and functions under this Act that are specified in the agreement or arrangement.
  • The new Section 10(2.1) provides that the Minister of Transport may exempt any person or vessel or class of persons or vessels from any provisions of the CSA or the regulations if the exemption would allow the undertaking of research and development to enhance marine safety or environmental protection.
  • The new Section 10.1 provides that the Minister of Transport may make an interim order if he or she believes that immediate action is required to deal with a direct or indirect risk to marine safety or to the marine environment. Such interim order has effect from the time that it is made and remains in effect for a period one year, or any shorter period that may be specified in the interim order.  However, the interim order may be extended by the Governor in Council for a period of no more than two years after the end of the applicable period.
  • The new Section 35.1 provides that the Governor in Council may, on the recommendation of the Minister of Transport, make regulations respecting the protection of the marine environment from the impacts of navigation and shipping activities, including regulations with respect to, among other things:
    • design, construction, manufacture and maintenance of vessels or classes of vessels and inspections and testing thereof;
    • specifying the machinery, equipment and supplies that are required or prohibited on board vessels or classes of vessels;
    • design, construction, manufacture, maintenance, storage, inspection, testing, approval, arrangement and use of the machinery, equipment and supplies of vessels or classes of vessels;
    • regulating or prohibiting the operation, navigation, anchoring, mooring or berthing of vessels or classes of vessels; and
    • regulating or prohibiting the loading or unloading of a vessel or a class of vessels.
  • New penalties for non-compliance by the amendment in Section 40.1 which provides for a fine of not more than $1,000,000 or to imprisonment for a term of not more than 18 months, or both.
  • The amendments to Sections 168.3, 175(2) and 180(1) allow the Minister or the Minister of Fisheries and Oceans who believes on reasonable grounds that a vessel or an oil handling facility has discharged, is discharging or may discharge a pollutant, to take measures that he or she considers necessary to repair, remedy, minimize or prevent pollution damage from the vessel or oil handling facility.

Marine Liability Act

With a focus on “modernizing Canada’s Ship-Source Oil Pollution Fund”, the amendments to the MLA include the following:

  • The amended Section 101(1.1) provides that the Ship-source Oil Pollution Fund is liable for the costs and expenses incurred by the Minister of Fisheries and Oceans or any other person in respect of measures taken under subsection 180(1) of the Canada Shipping Act, 2001 with respect to oil, or for loss or damage caused by those measures, for which neither the owner of a ship, the International Fund nor the Supplementary Fund is liable by reason of the fact that the occurrence or series of occurrences for which those costs and expenses were incurred did not create a grave and imminent threat of causing oil pollution damage.
  • The addition of Section 114.1 imposes levies on receivers and exporters of oil to be used to replenish the Ship-source Oil Pollution fund when depleted.
  • New penalties for non-compliance by the addition of Section 130.01 which provides for a fine of $50,000 per individual and, in the case of any other person, $250,000.

Going Forward

While these amendments are intended to improve maritime safety and environmental protection, it is not yet clear as to the impact these provisions will have upon the current Canadian marine and environmental framework.  It seems that some of the provisions are ambiguous or will be challenging to apply. Without further guidance on how these new measures will be implemented, and clarity on who has the regulatory authority to enforce or take action provided thereunder, the uncertainty will ultimately lead to litigation with the courts left to determine the appropriate outcome.  It will be interesting to see how the amendments to the CSA and the MLA will affect and bring about change to the maritime industry.


A cautionary note: The foregoing provides only an overview and does not constitute legal advice. Readers are cautioned against making any decisions based on this material alone. Rather, specific legal advice should be obtained.

This article is republished with the permission of the author. It was first posted on the McMillan LLP website.

About the Author

Joanna is a senior associate in the Business Law Group and the Transportation Group in the firm’s Vancouver office.  She practices in the areas of corporate, commercial and maritime law. Joanna routinely advises companies in the marine industry and a wide range of other industries on general corporate and commercial matters, including mergers and acquisitions, sales and purchases of businesses and marine assets, business structuring and organization, corporate restructuring and reorganization, and preparation and negotiation of agreements and contracts.

Joanna’s clients turn to her for day-to-day advice on their company operations and appreciate her practical and business-minded legal advice. She brings to her practice a depth of knowledge in the marine and transportation sectors acquired through her experience in working with ferry operators, shippers, ship owners and charter parties, and ship builders, locally and internationally.

With more oil to be shipped by rail, train derailments show enduring safety gaps

by Mark Winfield and Bruce Campbell, Faculty of Environmental Studies, York University, Canada

The recent runaway CP Rail train in the Rocky Mountains near Field, B.C., highlighted ongoing gaps in Canada’s railway safety regime, more than five years after the Lac-Mégantic rail disaster that killed 47 residents of the small Québec town.

The British Columbia crash resulted in the deaths of three railway workers and the derailment of 99 grain cars and two locomotives.

In the B.C. accident, the train involved had been parked for two hours on a steep slope without the application of hand brakes in addition to air brakes.

The practice of relying on air brakes to hold trains parked on slopes was permitted by both the company and by Transport Canada rules. Revised operating rules, adopted after the Lac-Mégantic disaster, had not required the application of hand brakes under these circumstances.

The latest accident was one of a rash of high-profile train derailments in Canada since the beginning of 2019. While none compares in magnitude with Lac-Mégantic, they evoke disturbing parallels to that tragedy. Although investigations are ongoing, what we do know raises questions about whether any lessons have in fact been learned from the 2013 disaster.

Now must apply hand brakes

Within days of the B.C. runaway, both CP Rail and Transport Canada mandated the application of hand brakes in addition to air brakes for trains parked on slopes. This after-the-fact measure parallels the action Transport Canada took days after Lac-Mégantic, prohibiting single-person crews, after having granted permission to Montréal Maine and Atlantic Railway to operate its massive oil trains through Eastern Québec with a lone operator.

Furthermore, like the Lac-Mégantic tragedy, existing mechanical problems with the locomotives involved reportedly played a role in the CP Rail derailment, raising questions about the adequacy of oversight with regard to equipment maintenance practices.

Like Lac-Mégantic, worker fatigue may have also played a role in the crash. Despite efforts within Transport Canada to force railways to better manage crew fatigue, railway companies have long resisted. Instead they have taken page out of the tobacco industry playbook by denying inconvenient scientific evidence as “emotional and deceptive rhetoric.”

The situation has prompted the Transportation Safety Board to put fatigue management on its watchlist of risky practices, stating that Transport Canada has been aware of the problem for many years but is continuing to drag its feet.

Oil-by-rail traffic explodes

The implications of the B.C. accident take on additional significance in light of the dramatic growth seen in oil-by-rail traffic in Canada over the past year. Export volumes reached a record 354,000 barrels per day in December 2018, with the vast majority of the oil going to refineries on the U.S. Gulf Coast and Midwest.

This development has not gone unnoticed by people living in communities across North America, who are concerned about the growing danger of another disastrous derailment.

The increase in traffic — now bolstered by the Alberta government’s plan to put another 120,000 barrels per day of crude oil on the rails by next year — is occurring at a time when the Transportation Safety Board reported a significant increase in “uncontrolled train movements” during 2014-17 compared to the average of the five years preceding the disaster.


Read more: Technology to prevent rail disasters is in our hands


This is despite the board’s Lac-Mégantic investigation report recommendation that Transport Canada implement additional measures to prevent runaway trains.

Two weeks after the B.C. crash, a CN train carrying crude oil derailed near St. Lazare, Man.; 37 tank cars left the tracks, punctured and partially spilled their contents. The cars were a retrofitted version of the TC-117 model tank car, developed after Lac-Mégantic, intended to prevent spills of dangerous goods. The train was travelling at 49 mph, just under the maximum allowable speed.

Budgets chopped

In the lead-up to the Lac-Mégantic disaster, the Harper government squeezed bothTransport Canada’s rail safety and transportation of dangerous goods oversight budgets. These budgets did not increase significantly after the disaster.

Justin Trudeau’s government pledged additional resources for rail safety oversight. However, Transport Canada’s plans for the coming years show safety budgets falling back to Harper-era levels. It remains to be seen whether these plans will be reversed in the upcoming federal budget.

Safety Management Systems-based approach remains the centrepiece of Canada’s railway safety system. That system been fraught with problems since it was introduced 17 years ago.

It continues to allow rail companies to, in effect, self-regulate, compromising safety when it conflicts with bottom-line priorities. Government officials claim there has been a major increase in the number of Transport Canada rail safety inspectors conducting unannounced, on-site inspections. But the inspectors’ union questions these claims.

If an under-resourced regulator, with a long history of deference to the industry, is unable to fulfil its first-and-foremost obligation to ensure the health and safety of its citizens, the lessons of Lac-Mégantic have still not been learned. The B.C. accident highlights that the window for history to repeat itself remains wide open.


This article is republished with permission. It was first published on The Conversation website.

About the Authors Authors

Mark Winfield is a Professor of Environmental Studies, York University, Canada

Bruce Campbell is an Adjunct professor, York University, Faculty of Environmental Studies, York University, Canada

Dredging Company fined $350,000 for depositing damaging substance into Fraser River

Company fined $350,000 for depositing damaging substance in Fraser River

Fraser River Pile and Dredge (GP) Inc. recently pleaded guilty to the Fisheries Act violation in British Columbia provincial court. The court fined the company $350,000. The fine was a result of one of the company’s dredging causing the depositing a deleterious substance into water frequented by fish – the Fraser River.

The conviction stems from an incident that occurred on the Fraser River in February 2014. During that time, the company was dredging in Deas Slough in the Fraser River when its vessel punctured a submerged water main carrying chlorinated water to the City of Delta. Enforcement officers from Environment Canada and Climate Change (ECCC) investigated the incident and determined that chlorinated water was released through the pipe into the waterway.

ECCC charged the company with the Fisheries Act violation as Deas Slough is an important fish-bearing body of water and the concentration of chlorine that was released was damaging to fish.

FRPD Equipment in Operation (Source: FRPD)

Fraser River Pile & Dredge (GP) Inc. (FRPD) is Canada’s largest Marine & Infrastructure, Land Foundations and Dredging contractor.  FRPD’s fleet includes cutter suction and trailing suction hopper dredges, spud barges, cranes, dump scows, and flat scows. The company performs all types and sizes of marine & infrastructure, environmental remediation, dredging and land foundations projects.

The $350,000 collected from the company by the government will be directed to the Government of Canada’s Environmental Damages Fund. Also, the company’s name will be added to an Candian environmental offenders registry.

U.S. Mining Sites – Legacy of Contamination Needs to be Addressed

https://www.thechronicleherald.ca/news/world/us-mining-sites-dump-50m-gallons-of-fouled-wastewater-daily-285939/

Rimini, Montana – Every day many millions of gallons of water loaded with arsenic, lead and other toxic metals flow from some of the most contaminated mining sites in the U.S. and into surrounding streams and ponds without being treated, The Associated Press has found.

That torrent is poisoning aquatic life and tainting water supplies in Montana, California, Colorado, Oklahoma and at least five other states.

The pollution is a legacy of how the mining industry was allowed to operate in the U.S. for more than a century. Companies that built mines for silver, lead, gold and other “hardrock” minerals could move on once they were no longer profitable, leaving behind tainted water that still leaks out of the mines or is cleaned up at taxpayer expense.

Using data from public records requests and independent researchers, the AP examined 43 mining sites under federal oversight, some containing dozens or even hundreds of individual mines.

The records show that at average flows, more than 50 million gallons of contaminated wastewater streams daily from the sites. In many cases, it runs untreated into nearby groundwater, rivers and ponds — a roughly 20-million-gallon daily dose of pollution that could fill more than 2,000 tanker trucks.

The remainder of the waste is captured or treated in a costly effort that will need to carry on indefinitely, for perhaps thousands of years, often with little hope for reimbursement.

The volumes vastly exceed the release from Colorado’s Gold King Mine disaster in 2015, when a U.S. Environmental Protection Agency cleanup crew inadvertently triggered the release of 3 million gallons (11.4 million liters) of mustard-colored mine sludge, fouling rivers in three states.

At many mines, the pollution has continued decades after their enlistment in the federal Superfund cleanup program for the nation’s most hazardous sites, which faces sharp cuts under President Donald Trump.

Federal officials have raised fears that at least six of the sites examined by AP could have blowouts like the one at Gold King.


Mine waste mixes with runoff at the Gold King Mine. (Provided by the U.S. Environmental Protection Agency)

Some sites feature massive piles or impoundments of mine waste known as tailings. A tailings dam collapse in Brazil last month killed at least 169 people and left 140 missing. A similar 2014 accident in British Columbia swept millions of cubic yards of contaminated mud into a nearby lake, resulting in one of Canada’s worst environmental disasters.

But even short of a calamitous accident, many mines pose the chronic problem of relentless pollution.

AP also found mining sites where untreated water harms the environment or threatens drinking water supplies in North and South Carolina, Vermont, Missouri and Oregon.

Tainted wells

In mountains outside the Montana capital of Helena, about 30 households can’t drink their tap water because groundwater was polluted by about 150 abandoned gold, lead and copper mines that operated from the 1870s until 1953.

The community of Rimini was added to the Superfund list in 1999. Contaminated soil in residents’ yards was replaced, and the EPA has provided bottled water for a decade. But polluted water still pours from the mines and into Upper Tenmile Creek.

“The fact that bottled water is provided is great,” said 30-year Rimini resident Catherine Maynard, a natural resources analyst for the U.S. Department of Agriculture. “Where it falls short is it’s not piped into our home. Water that’s piped into our home is still contaminated water. Washing dishes and bathing — that metal-laden water is still running through our pipes.”

Estimates of the number of such abandoned mine sites range from 161,000 in 12 western states to as many as 500,000 nationwide. At least 33,000 have degraded the environment, according to the Government Accountability Office, and thousands more are discovered every year.

Officials have yet to complete work including basic risk analyses on about 80 percent of abandoned mining sites on federal lands. Most are controlled by the Bureau of Land Management, which under Trump is seeking to consolidate mine cleanups with another program and cut their combined 2019 spending from $35 million to $13 million.

An abandoned mining site in Clear Creek County. (Jesse Paul, The Colorado Sun)

Perpetual pollution

Problems at some sites are intractable. Among them:

  • In eastern Oklahoma’s Tar Creek mining district, waterways are devoid of life and elevated lead levels persist in the blood of children despite a two-decade effort to clean up lead and zinc mines. More than $300 million has been committed since 1983, but only a small fraction of the impacted land has been reclaimed and contaminated water continues to flow.
  • At northern California’s Iron Mountain Mine, cleanup teams battle to contain highly acidic water that percolates through a former copper and zinc mine and drains into a Sacramento River tributary. The mine discharged six tons of toxic sludge daily before an EPA cleanup. Authorities now spend $5 million a year to remove poisonous sludge that had caused massive fish kills, and they expect to keep at it forever.
  • In Colorado’s San Juan Mountains, site of the Gold King blowout, some 400 abandoned or inactive mine sites contribute an estimated 15 million gallons (57 million liters) of acid mine drainage per day.

AP also found mining sites where untreated water harms the environment or threatens drinking water supplies in North and South Carolina, Vermont, Missouri and Oregon.

This landscape of polluted sites occurred under mining industry rules largely unchanged since the 1872 Mining Act.

State and federal laws in recent decades have held companies more accountable than in the past, but critics say huge loopholes all but ensure that some of today’s mines will foul waterways or require perpetual cleanups.

To avoid a catastrophe like Gold King, EPA officials now require advance approval for work on many mining sites. But they acknowledge they’re only dealing with a small portion of the problem.

“We have been trying to play a very careful game of prioritization,” said Dana Stalcup, deputy director of the Superfund program. “We know the Superfund program is not the answer to the hundreds of thousands of mines out there, but the mines we are working on we want to do them the best we can.”

The 43 sites examined by AP are mining locations for which officials and researchers have reliable estimates of polluted water releases. Officials said flow rates at the sites vary.

Average flows were unavailable for nine sites that only had high and low estimates of how much polluted water flowed out. For those sites, the AP used the lower estimates for its analysis.

Questions over who should pay

To date, the EPA has spent an estimated $4 billion on mining cleanups. Under Trump, the agency has identified a small number of Superfund sites for heightened attention after cleanup efforts stalled or dragged on for years. They include five mining sites examined by AP.

Former EPA assistant administrator Mathy Stanislaus said more money is needed to address mining pollution on a systematic basis, rather than jumping from one emergency response to another.

“The piecemeal approach is just not working,” said Stanislaus, who oversaw the Superfund program for almost eight years ending in 2017.

Democrats have sought unsuccessfully to create a special cleanup fund for old hardrock mine sites, with fees paid by the mining industry. Such a fund has been in place for coal mines since 1977, with more than $11 billion in fees collected and hundreds of sites reclaimed.

The mining industry has resisted doing the same for hardrock mines, and Republicans in Congress have blocked the Democratic proposals.

Montana Mining Association director Tammy Johnson acknowledged abandoned mines have left a legacy of pollution, but added that companies still in operation should not be forced to pay for those problems.

“Back in the day there really wasn’t a lot known about acid mine drainage,” she said. “I just don’t think that today’s companies bear the responsibility.”

In 2017, the EPA proposed requiring companies still operating mines to post cleanup bonds or offer other financial assurances so taxpayers don’t end up footing cleanup bills. The Trump administration halted the rule , but environmental groups are scheduled to appear in federal court next month in a lawsuit that seeks to revive it.

“When something gets on a Superfund site, that doesn’t mean it instantly and magically gets cleaned up,” said Earthjustice attorney Amanda Goodin. “Having money immediately available from a responsible party would be a game changer.”

Ontario: Fertilizer Producer fined $90,000 for Ammonia Spill

Terra International (Canada) Inc., was recently was convicted of one offence under the Ontario Environmental Protection Act (EPA) and was fined $90,000 plus a victim fine surcharge of $22,500. The conviction stems from an incident that occurred on August 11, 2016 when the company reported an ammonia gas release to the Ontario Environment Ministry’s Spills Action Centre. It was subsequently determined that approximately 8.57 tonnes of liquid ammonia was released and contained, which resulted in a release of 997 kilograms of ammonia gas to the air over a two-hour period.

The ammonia release resulted in various adverse effects including the closure of nearby roads for approximately one hour. In addition, two reports were received alleging odours, with one of those alleging irritation; a third report alleged irritation, nausea and difficulty breathing; and employees at one neighbouring company reported evacuating for approximately two hours.

Upon discovery of the ammonia gas release, personnel from Terra conducted a root cause analysis which concluded that a previously unknown mechanical deficiency in an ammonia pump resulted in the failure of a vent pipe containing liquid ammonia.

Terra International (Canada) Inc. is a wholly owned subsidiary of CF Industries and operates a facility in St. Clair Township, Ontario (30 km south of Sarnia, Ontario) where it produces ammonia and urea products. To produces up to 1.0 million tons of nitrogen products for agricultural and industrial use each year. Approximately 200 people work at the facility.

Pyrolysis makes oil-soaked soil fertile again

As reported by David Ruth in Physics.org, researchers at Rice University in Texas have developed a method of decontaminating soil impacted with heavy oil and making it fertile again. Rice engineers Kyriacos Zygourakis and Pedro Alvarez and their colleagues have fine-tuned their method to remove petroleum contaminants from soil through pyrolysis. The technique gently heats soil while keeping oxygen out, which avoids the damage usually done to fertile soil when burning hydrocarbons cause temperature spikes.

While large-volume marine spills get most of the attention, 98 percent of oil spills occur on land, Alvarez points out, with more than 25,000 spills a year reported to the Environmental Protection Agency. That makes the need for cost-effective remediation clear, he said.

“We saw an opportunity to convert a liability, contaminated soil, into a commodity, fertile soil,” Alvarez said.

The key to retaining fertility is to preserve the soil’s essential clays, Zygourakis said. “Clays retain water, and if you raise the temperature too high, you basically destroy them,” he said. “If you exceed 500 degrees Celsius (900 degrees Fahrenheit), dehydration is irreversible.”

The researchers put soil samples from Hearne, Texas, contaminated in the lab with heavy crude, into a kiln to see what temperature best eliminated the most oil, and how long it took.

Their results showed heating samples in the rotating drum at 420 C (788 F) for 15 minutes eliminated 99.9 percent of total petroleum hydrocarbons (TPH) and 94.5 percent of polycyclic aromatic hydrocarbons (PAH), leaving the treated soils with roughly the same pollutant levels found in natural, uncontaminated soil.

The paper appears in the American Chemical Society journal Environmental Science and Technology. It follows several papers by the same group that detailed the mechanism by which pyrolysis removes contaminants and turns some of the unwanted hydrocarbons into char, while leaving behind soil almost as fertile as the original. “While heating soil to clean it isn’t a new process,” Zygourakis said, “we’ve proved we can do it quickly in a continuous reactor to remove TPH, and we’ve learned how to optimize the pyrolysis conditions to maximize contaminant removal while minimizing soil damage and loss of fertility.

“We also learned we can do it with less energy than other methods, and we have detoxified the soil so that we can safely put it back,” he said.

Heating the soil to about 420 C represents the sweet spot for treatment, Zygourakis said. Heating it to 470 C (878 F) did a marginally better job in removing contaminants, but used more energy and, more importantly, decreased the soil’s fertility to the degree that it could not be reused.

“Between 200 and 300 C (392-572 F), the light volatile compounds evaporate,” he said. “When you get to 350 to 400 C (662-752 F), you start breaking first the heteroatom bonds, and then carbon-carbon and carbon-hydrogen bonds triggering a sequence of radical reactions that convert heavier hydrocarbons to stable, low-reactivity char.”

The true test of the pilot program came when the researchers grew Simpson black-seeded lettuce, a variety for which petroleum is highly toxic, on the original clean soil, some contaminated soil and several pyrolyzed soils. While plants in the treated soils were a bit slower to start, they found that after 21 days, plants grown in pyrolyzed soil with fertilizer or simply water showed the same germination rates and had the same weight as those grown in clean soil.


Lettuce growing in once oil-contaminated soil revived by a process developed by Rice University engineers. The Rice team determined that pyrolyzing oil-soaked soil for 15 minutes at 420 degrees Celsius is sufficient to eliminate contaminants while preserving the soil’s fertility. The lettuce plants shown here, in treated and fertilized soil, showed robust growth over 14 days. Credit: Wen Song/Rice University

“We knew we had a process that effectively cleans up oil-contaminated soil and restores its fertility,” Zygourakis said. “But, had we truly detoxified the soil?”

To answer this final question, the Rice team turned to Bhagavatula Moorthy, a professor of neonatology at Baylor College of Medicine, who studies the effects of airborne contaminants on neonatal development. Moorthy and his lab found that extracts taken from oil-contaminated soils were toxic to human lung cells, while exposing the same cell lines to extracts from treated soils had no adverse effects. The study eased concerns that pyrolyzed soil could release airborne dust particles laced with highly toxic pollutants like PAHs.

”One important lesson we learned is that different treatment objectives for regulatory compliance, detoxification and soil-fertility restoration need not be mutually exclusive and can be simultaneously achieved,” Alvarez said.

Exxon Valdez Oil Spill – Lessons learned 30 years after the event

As reported in the Fairbanks Daily News-Miner, there are still lessons to be learned from the Exxon Valdez oil spill that occurred on March 24th, 1989.

A recent report issued by the United States Government Accountability Office (U.S. GAO) found that some organizations involved in environmental cleanup, restoration and research weren’t talking to each other during the Exxon Valdez Oil Spill or the Deepwater Horizon oil spill that occurred in 2010. In fact, some agencies weren’t even aware that the other existed.

The U.S. Congress, reacting to the Exxon Valdez spill, created the Interagency Coordinating Committee on Oil Pollution Research as part of the Oil Pollution Act of 1990. The committee’s purpose is to “coordinate oil pollution research among federal agencies and with relevant external entities,” according to the GAO. The committee, which has representatives from 15 agencies, is expected to coordinate with federal-state trustee councils created to manage restoration funds obtained through legal settlements.

GAO investigators found, however, that “the committee does not coordinate with the trustee councils and some were not aware that the interagency committee existed.”

Although three decades have passed since oil soiled the surface of Prince William Sound and rolled onto its shores, evidence of the spill remains. GAO staff visited the spill site in May of last year “and observed the excavation of three pits that revealed lingering oil roughly 6 inches below the surface of the beach …” Restoration is largely complete in Prince William Sound, but some work continues and research will continue for decades, the GAO report notes.

Background: Exxon Valdez Spill and Clean-up

As reported in History.com, The Exxon Valdez oil spill was a man-made disaster that occurred when Exxon Valdez, an oil tanker owned by the Exxon Shipping Company, spilled 41 million litres of crude oil into Alaska’s Prince William Sound on March 24, 1989. It was the worst oil spill in U.S. history until the Deepwater Horizon oil spill in 2010. The Exxon Valdez oil slick covered 2,000 kilometres of coastline and killed hundreds of thousands of seabirds, otters, seals and whales.

Exxon payed about $2 billion in cleanup costs and $1.8 billion for habitat restoration and personal damages related to the spill.

Cleanup workers skimmed oil from the water’s surface, sprayed oil dispersant chemicals in the water and on shore, washed oiled beaches with hot water and rescued and cleaned animals trapped in oil.

Environmental officials purposefully left some areas of shoreline untreated so they could study the effect of cleanup measures, some of which were unproven at the time. They later found that aggressive washing with high-pressure, hot water hoses was effective in removing oil, but did even more ecological damage by killing the remaining plants and animals in the process. Nearly 30 years later, pockets of crude oil remain in some locations.

Lessons Learned

A 2001 study found oil contamination remaining at more than half of the 91 beach sites tested in Prince William Sound.

The spill had killed an estimated 40 percent of all sea otters living in the Sound. The sea otter population didn’t recover to its pre-spill levels until 2014, twenty-five years after the spill.

Stocks of herring, once a lucrative source of income for Prince William Sound fisherman, have never fully rebounded.

In the wake of the Exxon Valdez oil spill, the U.S. Congress passed the Oil Pollution Act of 1990. The Oil Pollution Act of 1990 increased penalties for companies responsible for oil spills and required that all oil tankers in United States waters have a double hull. The Oil Pollution Act of 1990 (OPA), which was enacted after the Exxon Valdez spill in 1989, established the Interagency Coordinating Committee on Oil Pollution Research (interagency committee) to coordinate oil pollution research among federal agencies and with relevant external entities, among other things.

The U.S. GAO recommends, among other things, that the interagency committee coordinate with the trustee councils to support their work and research needs. 

Industrial Absorbents Market to Exceed $4.7 Billion by 2023

According to the new market research report, the industrial absorbents market is expected to grow from USD 3.7 billion in 2018 to USD 4.7 billion by 2023, at a Compound Annual Growth Rate (CAGR) of 5.1% during the forecast period.

The report, prepared by Research and Markets and entitled “Industrial Absorbents Market By Material Type (Natural Organic & Inorganic, Synthetic), Product (Pads, Rolls, Booms & Socks), Type (Universal, Oil-only, HAZMAT), End-use Industry (Oil & Gas, Chemical, Food Processing), and Region – Global Forecast to 2023“, states that the major factors driving the industrial absorbents market include growing environmental concerns and regulations regarding oil and chemical spills.

The synthetic segment is expected to be the fastest-growing material type segment in the industrial absorbents market. The industrial absorbents market by material type has been categorized into natural organic, natural inorganic, and synthetic. Synthetic industrial absorbents are capable of absorbing liquid up to 70 times of their weight, which makes them a highly adopted material for industrial applications. Synthetic absorbents have properties such as non-flammability and excellent water repellency, which makes them suitable for applications in oil-only and HAZMAT spill control products.

Booms and socks are ideal industrial absorbents products for spill control. Booms and socks are widely used for oil-based spill control in water environment. Booms have excellent water repelling properties and are best suited for water environments such as sea, lakes, and ponds, among others. Socks are flexible tubes which are used to control and contain spills on land environment and are ideal for quickly absorbing oil- or water-based liquid spills on land. In regions such as the Middle East & Africa and Europe, there are high occurrences of large spills in marine areas, which drives the growth of booms & socks segment in the industrial absorbents market.

Oil Absorbent Booms

Market Drivers

HAZMAT/chemical absorbent products are used to cleanup spills involving acids, bases, and other hazardous or unknown liquids as these spills can have harmful impacts on the environment and can be dangerous to the living beings present in the vicinity. HAZMAT/chemical absorbent products are designed to absorb the most aggressive acidic or caustic fluids and are majorly composed of synthetic absorbents. In addition, stringent regulations in regions such as North America and Europe on chemical discharge in to the environment have led to an increase in the demand for spill control products designed for chemicals. Therefore, this factor has fueled the adoption and application of HAZMAT/chemical absorbent products, which is driving the growth of the industrial absorbents market.

Chemicals are hazardous materials, and can cause severe harm to humans or environment if accidentally released or spilled in the environment. Chemical accidents usually occur during transportation of stored chemicals. Chemical manufacturers need to immediately respond to accidental spills that occur during manufacturing processes to minimize the impact of spills on the environment. Furthermore, regions such as North America and Europe have stringent norms with respect to chemicals and spill response. All these factors have fueled the growth of the industrial absorbents market in the chemical end-use industry.

Asian Pacific Market

Asia Pacific industrial absorbents market is expected to have the highest growth rate during the forecast period due to the rising awareness and pressure to reinforce strict environmental regulations for spill response & control and pollution caused by end-use industries. The industrial absorbents market in Asia Pacific is driven by the demand from countries such as China, Japan, India, and South Korea, owing to rapid industrialization and rising occurrences of small liquid spills across the end-use industries.

Key Market Players

The major manufacturers in the global industrial absorbents market are 3M Company (US), Brady Corporation (US), Decorus Europe Ltd. (UK), Johnson Matthey Plc (UK), Kimberly-Clark Professional (US), Meltblown Technologies Inc. (US), Monarch Green, Inc. (US), New Pig Corporation (US), and Oil-Dri Corporation of America (US).