Successful Demonstration of Enhanced Soil Vapour Extraction

Researchers at Integrated Science & Technologies Inc. recently presented the findings from a field demonstration project that showed that enhanced soil vapour extraction significantly reduced the concentration of 1,4-Dioxane in soil.

1,4-Dioxane is often called simple dioxane because the other dioxane isomers (1,2- and 1,3-) are rarely encountered.  1,4-Dioxane is a synthetic industrial chemical that is completely miscible in water.  It is used as a solvent for a variety of applications.  1,4-Dioxane is a likely contaminant at many sites contaminated with certain chlorinated solvents (particularly 1,1,1-trichloroethane [TCA]) because of its widespread use as a stabilizer for chlorinated solvents

With respect to remediation, some 1,4-dioxane can be removed from pore water found in the vadose zone (unsaturated zone) in the subsurface by conventional soil vapor extraction (SVE), remediation is typically inefficient.  SVE extracts vapors from the soil above the water table by applying a vacuum to pull the vapors out.

SVE is inefficient at removing 1,4-dioxane from pore water in the subsurface vadose zone.  1,4-dioxane has a low Henry’s Law constant at ambient temperature.  This means that there is a low concentration of dissolved 1,4-dioxane gas proportional to its partial pressure in the gas phase.

To enhance the extraction for 1,4-dioxane in the subsurface, the researchers used heated air injection and more focused SVE extraction (XSVE).  The pilot teste was conducted at the former McClellan Air Force Base located in the North Highlands area of Sacramento County, 7 miles (11 km) northeast of Sacramento, California.

Soil Vapor Extraction unit at former McClellan Air Force Base, Calif. (U.S. Air Force Photo by Scott Johnston)

The pilot test consisted for four peripheral heated air injection wells of the XSVE system surrounded a 6.1 m x 6.1 m x 9.1 m deep treatment zone with a central vapor extraction well.

Soil temperature measurements were taken during the pilot test.  Soil temperatures reached as high as ~90°C near the injection wells after 14 months of operation and flushing of the treatment zone with ~20,000 pore volumes of injected air.  Results post treatment showed dioxane reductions of ~94% and ~45% decrease in soil moisture.  See additional information in slides at http://www.contaminantssummit.com/images/presentations/3_RobHinchee.pdf .

The Supreme Court of Canada to Decide who pays to Clean-up Toxic Industrial Sites

The Supreme Court of Canada is hearing a controversial case this week concerning who is responsible for cleaning up toxic industrial sites when a company goes bankrupt.

At stake is potentially billions of dollars in environmental clean-up costs. And entities ranging from governments to Canada’s big banks to oil and gas companies and farmers are all looking to ensure that they don’t end up on the hook for cleaning up toxic sites – many of them in remote rural and northern areas of the country.

The case itself focuses on a small Alberta oil company, Redwater Energy, which entered creditor protection in 2015. Only a few of the company’s assets had value, so the bank wanted to sell those wells to recover some of its debt and abandon the rest of the oil and gas sites. The question became whether Redwater’s assets should help pay its debts or be used to pay for the cleanup cost of its worthless oil and gas wells?

The case will address a fundamental public policy dilemma about what happens when a resource company bites the dust. For instance, every mine in the country has environmental regulations attached to its licence about reclaiming the site when the mine closes.

But if the company goes belly up, does the bank take over those end-of-life responsibilities? If not, is the site abandoned or do taxpayers pick up the hefty tab?

The question for the Government of Alberta and area farmers that had Redwater oil and gas wells on their land became whether Redwater’s assets should help pay its debts or be used to pay for the clean-up cost of its worthless and contaminated work sites?

The Supreme Court case addresses a fundamental public policy dilemma about what happens when a resource company fails. Every mine operation in Canada has environmental regulations attached to its licence about reclaiming the site when the mine closes. But if the company goes belly up, does the bank take over those end-of-life responsibilities? If not, is the site abandoned or do taxpayers pick up the hefty tab when the provincial government pays to clean it up? And how much cost should farmers and other landowners bare for clean-up and reclamation costs?

“We need to be able to ensure the people of Alberta, collectively, are protected,” Alberta Premier Rachel Notley told reporters earlier this week.

The Alberta Energy Regulator (AER) says there are approximately 1,800 abandoned oil and gas sites in that province alone and pegs the cost to remediate them at $8.6 billion.

If the Supreme Court sides with previous court rulings, the AER will likely respond by increasing the orphan levy imposed on well licensees. However, a portion of the expense will inevitably fall to the provincial government, and thus to taxpayers. But if the Supreme Court decides to reverse the decision, it will create hesitancy among lenders. Financial institutions will likely respond by tightening their purse strings as they begin pricing the risk into new loans made out to the industry.

This case has consequences that reach far beyond one small energy company. The Redwater case could act as precedent in other provinces. If the previous rulings are upheld, it will send a clear signal to natural resource companies’ creditors that bankrolling fossil fuel infrastructure, mining projects, and pulp and paper mills without accounting for clean-up costs is not only acceptable, but encouraged in a legal climate where the public—not the polluter—pays.

“The Redwater decision impacts Alberta’s constitutional right to manage its own resources,” said AER spokeswoman Cara Tobin, adding that “By rejecting the polluter pays principle that underlies virtually all of Alberta’s oil and gas legislation, it’s shifted liability from the polluter to innocent third parties and the public.”

The provincial governments of Ontario, which currently has about 2,400 oil and natural gas producing wells, along with British Columbia and Saskatchewan have also joined the Supreme Court Case, which will be heard in Ottawa this week. The Canadian Association of Petroleum Producers is also an intervener in the legal case.

Who is Charge of Harbour Clean-ups in Ontario?

As reported by the CBC, Environment and Climate Change Canada (ECCC) does not consider itself as the lead for the clean-up of Hamilton Harbour or Thunder Bay harbour.  ECCC says, while it is leading an ongoing harbour cleanup in Hamilton, it’s not a role the federal agency usually assumes.

That comes as proponents of cleaning up historical pollution in the harbour in Thunder Bay, Ont., try and sort out who is responsible for spearheading similar efforts in the northwestern Ontario city.

“If your question is, does it need a champion? It absolutely does,” Hamilton Mayor Fred Eisenberger said of the importance that an organization with jurisdiction over a polluted site push for a cleanup. “It needs one organization to keep pushing it along.”

“If it continues to be work that is just secondary work for someone off the corner of their desk, then it’s going to be a long, hard, arduous process.”

Efforts to clean up historical industrial pollution at the Randle Reef site in Hamilton’s harbour date back at least 15 years, said Eisenberger, who also used to be the chair of the board for the Hamilton Port Authority.  For years, he said, the port effectively served the lead agency role, coordinating local stakeholders and senior levels of government to move the project forward.

Environment Canada took the reins well into the project’s lifespan, according to Eisenberger and a spokesperson with the federal agency, and only after the involvement of the Hamilton port — who owns the harbour bed at Randle Reef.

In Thunder Bay, determining who should be that advocate has been difficult; the water lots where 400,000 cubic metres of mercury-contaminated pulp fibre sit in the harbour’s north end are owned by Transport Canada but administered by the Thunder Bay Port Authority.

Transport Canada has told CBC News spearheading a cleanup is up to the port, while port officials say they’ve been told by Transport Canada to advise on — not lead — remediation efforts.  The port has pointed to Environment Canada as the most appropriate lead agency, citing its role in Hamilton.

Approximate Area of Contaminated Sediment in Thunder Bay Harbour

‘No standard model’

Just because Environment Canada takes a leadership role in one project doesn’t necessarily mean it will in all cases, a spokesperson with the agency said.

“There really is no standard model for remediating contaminated sites other than that governments try to apply, where possible, the polluter-pay principle,” Jon Gee, Environment Canada’s manager of the Great Lakes area of concern wrote in an email to CBC News.

In Thunder Bay, the industrial companies largely responsible for the legacy pollution no longer exist.

Environment Canada’s lead role in Hamilton was the result of “a long negotiation between the Government of Canada and the other organizations,” Gee wrote. “It is not a role that the Department usually undertakes.”

The jurisdictional confusion in Thunder Bay has caught the attention of at least one legislator in the area.  Officials with the office of Thunder Bay-Superior North MP Patty Hajdu said she has met with members of the Thunder Bay Remedial Action Plan’s public advisory committee and that she will also discuss the matter with the federal ministers of transport and the environment.

Construction of the Randle Reef cleanup project in Hamilton Harbour

Gee said Environment Canada “remains committed” to working with government and other stakeholders on the project.

In Hamilton’s case, funding for the $139 million Randle Reef project is being split among the federal and provincial governments, as well as Hamilton, Burlington, the Hamilton Port Authority and Stelco, a steel company based in Hamilton. It’s expected to be complete in 2022.

In Thunder Bay, a number of remediation options were presented in 2014 to the public, with feedback going into a report.  Environment Canada has said no preferred option was identified because there is no lead agency on the project. Cost estimates at the time ranged anywhere from $30 million to $90 million.

Status of Hamilton Harbour Clean-up

As reported in the Hamilton Spectator, Hamilton Harbour still has an undetermined number of years to go before it can meet water quality and ecological standards acceptable to the International Joint Commission.  The Canada/U.S. bilateral agency that oversees cross-border water issues said in a statement this week that — after three decades — it is growing restless about the slow pace of Great Lakes water improvements on both sides of the border.

“The IJC identifies specific gaps in achieving the human health objectives … for drinkable, swimmable and fishable waters, and recommends that the governments set an accelerated and fixed period of time for effectively achieving zero discharge of inadequately treated or untreated sewage into the Great Lakes,” the agency says.

More than 30 years ago, the commission deemed 43 “areas of concern” on the Great Lakes — including Hamilton Harbour — and only seven sites have so far been delisted, three of which are in Canada.

Two big projects currently underway in Hamilton harbour are expected to lead to major improvements in its water quality. The first is the ongoing work encapsulating the highly toxic coal tar blob at Randle Reef. The Randle Reef Contaminated Sediment Remediation Project is scheduled for completion in 2022 at a total cost of $138.9 million spread out over three phases.

The other ongoing big-ticket item is Woodward Avenue Wastewater Treatment Plant, which is in the second year of a five-year, $340-million upgrade that will raise treatment to a modern tertiary level. This is expected to dramatically reduce discharges into the bay with most notably a reduction of 65,000 kilograms of phosphorus per year.

Status of Thunder Bay Harbour Clean-up

As reported in TB News Watch, the recommendations in a clean-up report of mercury in Thunder Bay, Ontario harbour have yet to be acted upon.  It has been more than three years since a consultant’s report identified options for the management of 400,000 cubic metres (14 million cubic feet) of mercury-contaminated sediment.

Thunder Bay is located at the northwest corner of Lake Superior and has a population of approximately 110,000.

The source of the mercury in the sediment was industrial activity along Thunder Bay’s north harbour for over 90 years including pulp and paper mill operations.  The sediment is contaminated with mercury in concentrations that range from 2 to 11 ppm at the surface of the sediment to 21 ppm at depth and ranging in thickness from 40 to 380 centimeters and covering an area of about 22 hectares (54 acres).

The preferred solution in the consultant’s report was to dredge the sediment and transfer it to the Mission Bay Confined Disposal Facility (CDF) at the harbour’s south end.  That came with an estimated cost of $40 million to $50 million, and was considered the best choice based on factors such as environmental effectiveness and cost.  The consultants also looked at other options, including building a new containment structure on the shoreline adjacent to the former Superior Fine Papers mill.

U.S. EPA Sees New Challenges Ahead for Superfund

by  Loren R. Dunn and Eric L. Klein, Beveridge & Diamond PC

The U.S. EPA released a four-year “strategic plan” in mid-February that continues to emphasize the Superfund program as one of Administrator Scott Pruitt’s top priorities.  While it has been clear since last summer’s Superfund Task Force report that the agency’s new leadership wants to accelerate Superfund site cleanups, the agency’s new strategic plan reveals for the first time that the U.S. EPA also sees emerging challenges ahead for Superfund.

“A number of factors may delay cleanup timelines,” the agency wrote in its strategy document.  These factors include the “discovery of new pathways and emerging contaminants” such as vapor intrusion and per- and polyfluoroalkyl substances (PFAS), and new science such as “new toxicity information or a new analytical method.”

Photo Credit: Michael Paulsen / Houston Chronicle

According to the strategic plan, the emergence of this kind of new information can reopen previously settled remedy determinations – and the Superfund sites that still remain on the National Priorities List (NPL) already tend to be the harder cases, with more difficult patterns of contamination and more complex remedies.  The U.S. EPA flagged in particular its waste management and chemical facility risk programs, where “rapidly changing technology, emerging new waste streams, and aging infrastructure present challenges[.]”

It remains to be seen whether the agency’s cautions in the Superfund section of its strategy document represent a meaningful shift in the agency’s frequently-stated intention to reinvigorate the Superfund program.  Early in his tenure, Mr. Pruitt charged his Superfund Task Force with generating a series of recommendations centered around Mr. Pruitt’s goals for Superfund: faster cleanups, the encouragement of cleanup and remediation investments by PRPs and private investors, and a process centered on stakeholder engagement and community revitalization.  In December 2017, in response to one of the Task Force’s recommendations, the agency released a list of 21 high-priority NPL sites that Mr. Pruitt targeted for “immediate and intense attention,” according to an U.S. EPA press release.  The cautionary notes in this week’s strategic plan are a subtle shift in tone for the U.S. EPA.

At the same time, the document also sets forth a plan for improving the consistency and certainty of EPA’s enforcement activities in the regulated community.  It remains to be seen how U.S. EPA intends to achieve consistency while being responsive to state and tribal interests.

These goals, of course, will depend on the details of implementation, which are not set forth in the strategic plan.  And such details will depend on the agency’s budget, which remains in flux for 2019 and beyond.  For example, U.S. EPA’s proposed budget for fiscal year 2019 sought a roughly $327 million cut in the Superfund program, but the funds were added back into the budget proposal as part of last-minute budget agreement reached in Congress last week, securing the program’s funding in the short-term.   Last year, the administration proposed a 30% cut in the agency’s funding  but Congress balked and eventually approved a budget that cut roughly 1%.

______________________

About the Authors

Loren R. Dunn represents regional and national companies at locations throughout the country in environmental regulation and litigation issues.  Loren’s environmental projects have involved hazardous waste and large multi-party toxics cleanup sites, including marine and fresh water sediment sites, landfills, and natural resource damages claims. He has also conducted extensive work obtaining permits for key facility operations. He has particularly deep knowledge of the following industries: manufactured gas facilities, regulated utilities, smelters and metals refineries, pesticide sites, and large area contamination sites.

Eric L. Klein is an environmental civil litigator and regulatory counselor in the Washington, D.C. office of Beveridge & Diamond, P.C.  He has handled cases in state and federal courts throughout the United States, litigating a variety of complex civil and commercial matters before juries, trial and appellate courts, arbitrators and administrative tribunals.  Mr. Klein frequently litigates both statutory and common law claims, and specializes in challenging and defending technical experts in the litigation of complex environmental torts.

This article was first published on the Beveridge & Diamond PC website.

Tracing Contaminated Soil in Quebec

As reported in LaPresse, the Quebec Environment Minister, Isabelle Melancon, recently announced that the Quebec government will soon begin a pilot project to improve the “traceability” of contaminated soil from construction sites.

An earlier story in LaPresse stated the provincial authorities lost track of 3,000 tonnes of contaminated soil from a the Baril School in Hochelaga-Maisonneuve.  Management of the soil had been taken over by the company of a former Hell’s Angels partner, OFA Environment Management.

Remediation work at the Baril Elementary School in Hochelaga-Maisonneuve, Montreal

Soils were to be shipped to a Quebec-based company, accredited by the Quebec Ministry of the Environment. Instead, they were moved to another company with the same name, but located near East Hawkesbury, Ontario.  The firm apparently operated from a place that does not have an address.

There is no prohibition on shipping contaminated soil to Ontario, where the rules governing their treatment are less stringent than in Quebec. But in the case of the Hochelaga-Maisonneuve school, the contract specified that the floors were to be arranged in accordance with the Quebec law, according to the company in charge of supervising the construction site.

“We can not pretend that nothing is happening,” said Melançon at the end of a meeting of the Council of Ministers.

Last fall, La Presse revealed that “highly contaminated” soils had been dumped illegally on the banks of the Achigan River in Sainte-Sophie, in the Laurentians.

“[You have to] know where it’s going, what happened,” said the minister.  “We have to follow the soil better because, as we can see, this is the second horror story I am confronted with. ”

Quebec is currently in talks with potential suppliers to set up a “traceability” program. The pilot project should be launched shortly.

US officials consider robots to prevent mine spills

As reported by the Associated Press, Crumbling mine tunnels awash with polluted waters perforate the Colorado mountains and scientists may one day send robots creeping through the pitch-black passages to study the mysterious currents that sometimes burst to the surface with devastating effects.

One such disaster happened at the inactive Gold King Mine in southwestern Colorado in 2015, when the United States Environmental Protection Agency (U.S. EPA) accidentally triggered the release of 3 million gallons of mustard-colored water laden with arsenic, lead and other toxins. The spill tainted rivers in three states.

a man in a hard hat sprinkling lime (white power) into a pool of muddy water next to a culvert. Here, lime is added to a settling pond to assist in the pH adjustment of the water (Credit: Eric Vance/U.S. EPA)

Now the U.S. EPA is considering using robots and other sophisticated technology to help prevent these types of “blowouts” or clean them up if they happen. But first, the agency has to find out what’s inside the mines, some of which date to Colorado’s gold rush in the 1860s.

Wastewater laden with toxic heavy metals has been spewing from hundreds of inactive mines nationwide for decades, the product of complicated and sometimes poorly understood subterranean flows.

Mining creates tainted water in steps: Blasting out tunnels and processing ore exposes long-buried, sulfur-bearing rocks to oxygen. The sulfur and oxygen mix with natural underground water flows to create sulfuric acid. The acidic water then leaches heavy metals out of the rocks.

To manage and treat the wastewater, the U.S. EPA needs a clear idea of what’s inside the mines, some of which penetrate thousands of feet into the mountains. But many old mines are poorly documented.

Investigating with robots would be cheaper, faster and safer than humans.

“You can send a robot into an area that doesn’t have good air quality. You can send a robot into an area that doesn’t have much space,” said Rebecca Thomas, project manager for the U.S. EPA’s newly created Gold King Superfund site, officially known as the Bonita Peak Mining District.

Instruments on the robots could map the mines and analyze pollutants in the water.

They would look more like golf carts than the personable robots from “Star Wars” movies. Hao Zhang, an assistant professor of computer science at the Colorado School of Mines, envisions a battery-powered robot about 5 feet long with wheels or tracks to get through collapsing, rubble-strewn tunnels.

Zhang and a team of students demonstrated a smaller robot in a mine west of Denver recently. It purred smoothly along flat tunnel floors but toppled over trying to negotiate a cluttered passage.

“The terrain is pretty rough,” Zhang said. “It’s hard for even humans to navigate in that environment.”

A commercial robot modified to explore abandoned mines — including those swamped with acidic wastewater — could cost about $90,000 and take three to four years to develop, Zhang said.

Robot in underground mine (Photo Credit: Tatlana Flower/AP File)

Significant obstacles remain, including finding a way to operate remotely while deep inside a mine, beyond the reach of radio signals. One option is dropping signal-relay devices along the way so the robot stays in touch with operators. Another is designing an autonomous robot that could find its own way.

Researchers are also developing sophisticated computerized maps showing mines in three dimensions. The maps illustrate where the shafts intersect with natural faults and provide clues about how water courses through the mountains.

“It really helps us understand where we have certainty and where we have a lot of uncertainty about what we think is happening in the subsurface,” said Ian Bowen, a U.S. EPA hydrologist. “So it’s a wonderful, wonderful tool.”

The U.S. EPA also plans to drill into mines from the surface and lower instruments into the bore holes, measuring the depth, pressure and direction of underground water currents.

Tracing the currents is a challenge because they flow through multiple mines and surface debris. Many tunnels and faults are connected, so blocking one might send water out another.

“You put your finger in the dike here, where’s the water going to come out?” Thomas said.

Once the U.S. EPA finishes investigating, it will look at technologies for cleansing the wastewater.

Options range from traditional lime neutralization — which causes the heavy metals dissolved in the water to form particles and drop out — to more unusual techniques that involve introducing microbes.

The choice has consequences for taxpayers.  If no company is found financially responsible, the EPA pays the bill for about 10 years and then turns it over to the state.  Colorado currently pays about $1 million a year to operate a treatment plant at one Superfund mine. By 2028, it will pay about $5.7 million annually to operate plants at three mines, not including anything at the Bonita Peak site.

The U.S. EPA views the Colorado project as a chance for the government and entrepreneurs to take risks and try technology that might be useful elsewhere.

But the agency — already dealing with a distrustful public and critical politicians after triggering the Gold King spill — said any technology deployed in Colorado will be tested first and the public will have a chance to comment before decisions are made.

“We’re certainly not going to be in the position of making things worse,” Thomas said. “So when I say we want to take risks, we do, but we want to take calculated, educated risks and not worsen water quality.”

Transport Canada publishes quick reference guide for first responders

As part of the Government of Canada’s ongoing commitment to providing first responders and emergency planners with the tools and resources they need to respond to a dangerous goods emergency, Transport Canada convened a meeting of the Steering Committee on First Responder Training today.

The meeting brought together stakeholders and government representatives to help steer the development of a national training curriculum for personnel who respond to railway incidents involving the transportation of dangerous goods.

At the meeting, Transport Canada announced the publication of a quick reference guide, You’re Not Alone!, which is designed to help first responders at the scene of an incident involving flammable liquids.  The guide outlines important safety measures and groups them into five steps as part of emergency planning.

The guide was added to Safety Awareness Kits published by Transport Canada in 2017 and is aimed at first responders and communities.

Transport Canada published these kits and the quick reference guide to raise community awareness of existing available resources on dangerous goods.

The Honourable Marc Garneau, Minister of Transport, in a statement said: “Communities and first responders need to know that if a dangerous goods incident occurs, they’re not alone, and there are resources available to help. The safe transportation of dangerous goods by rail remains one of my top priorities.  We all share a common goal of making sure everyone is prepared for a dangerous goods emergency and the ‘You’re Not Alone!’ quick reference guide is an important piece of that preparation.”

The reference guide can be accessed here.

Unique oil spill in East China Sea frustrates scientists

As reported by Cally Carswell in Nature, When the Iranian oil tanker Sanchi collided with a cargo ship, caught fire and sank in the East China Sea in mid-January, an entirely new kind of maritime disaster was born. Nearly two weeks later, basic questions remain unanswered about the size of the spill, its chemical makeup and where it could end up. Without that crucial information, researchers are struggling to predict the short- and long-term ecological consequences of the incident.

Sanchi Oil Tanker partially explodes in East China Sea (Photo Credit: CNN)

“This is charting new ground, unfortunately,” says Rick Steiner, a former University of Alaska professor in Anchorage who has studied the environmental impacts of oil spills and consulted with governments worldwide on spill response. “This is probably one of the most unique spills ever.”

The infamous spills of the past — such as the Deepwater Horizon disaster in the Gulf of Mexico in 2010, or the Exxon Valdez tanker rupture in Alaska’s Prince William Sound in 1989 — involved heavier crude oil. It can remain in the deep ocean for years and has chronic impacts on marine life. The Sanchi carried a little more than 111,300 metric tons of natural gas condensate, a lighter, more volatile petroleum product which doesn’t linger as long in the environment. Condensate has never before been unleashed into the sea in large quantities.

Unlike heavy crude, condensate doesn’t accumulate in shimmering slicks on the water’s surface, which makes it difficult to monitor and contain. Neither does it sink to the ocean floor, as do some of the heavier constituents in crude over time. Rather, it burns off, evaporates or dissolves into the surface water, where some of its chemical components can linger for weeks or months.

“Most oil spills have a chronic toxicological effect due to heavy residuals remaining and sinking over time,” says Ralph Portier, a marine microbiologist and toxicologist at Louisiana State University in Baton Rouge. “This may be one of the first spills where short-term toxicity is of most concern.”

Missing science

A significant, but unknown, portion of the Sanchi’s condensate probably fuelled the fires that followed the collision. In the waters immediately surrounding the tanker, Portier says, the conflagration and gaseous fumes would have killed off or injured phytoplankton, along with birds, marine mammals and fish that were caught in the vicinity when the tanker ignited.

Moving beyond the fire, the impact of the accident becomes harder to discern. That’s because the exact chemical composition of the condensate has not yet been made public, Steiner says, and because no one knows how much of the condensate dissolved into the water.

“The part I’m most worried about is the dissolved fraction,” Steiner says. Toxic chemicals in the condensate could harm plankton, fish larvae and invertebrate larvae at fairly low concentrations at the sea surface, he says. Fish could suffer reproductive impairments so long as chemicals persist in the water, and birds and marine mammals might experience acute chemical exposure. “In a turbulent, offshore environment, it dilutes fairly quickly,” he says. “But it’s still toxic.”

Because this type of spill is new, Portier says, researchers don’t yet understand the ultimate consequences of acute exposure to condensate in the sea, where it’s breaking down and dispersing. “That’s really where the science is missing,” he says.

Destination unknown

Researchers are also scrambling to assess where pollutants from the Sanchi could travel. Groups in both China and the United Kingdom have run ocean-circulation models to predict the oil’s journey, and the models agree that much of the pollution is likely to end up in a powerful current known as the Kuroshio, which flows past southeastern Japan and out to the North Pacific. The European models suggest that chemicals from the Sanchi could reach the coast of Japan within a month. But the Chinese models indicate that they are unlikely to intrude on Japanese shores at all.

Katya Popova, a modeller with the National Oceanography Centre in Southampton, UK, isn’t sure why the models disagree. But she says that the discrepancy points to the importance of forging international collaborations to increase confidence in model projections during emergencies. “This is something that the oil industry should organize and fund to improve preparedness,” she says.

Fangli Qiao with China’s State Oceanic Administration in Qingdao says his group’s models indicate that the pollution’s probable path overlaps with Japanese sardine and anchovy fisheries. But Popova cautions that the models are not necessarily good indicators of potential harm to fisheries or coastlines.

“All we’re saying is, if something is spilled here at this time, we can give you the most probable distribution,” she says. “We don’t know what type of oil or how much.” Those are crucial details because condensate components could degrade or evaporate before reaching important fisheries or shores. “A monitoring programme is the most pressing need right now,” Popova says, “to see where it goes and in what concentration.”

Yet Steiner says that comprehensive environmental monitoring doesn’t seem to have started. Official Chinese-government statements have included results from water-quality monitoring at the wreckage site, but none from the downstream currents that could be dispersing the pollution. “Time is of the essence, particularly with a volatile substance like condensate,” Steiner says. “They needed to immediately be doing plankton monitoring, and monitoring of fish, sea birds. I’ve seen no reports of any attempt to do that.”

Nature 554, 17-18 (2018)

doi: 10.1038/d41586-018-00976-9

Remediation of Trichoroethane (TCE) – contaminated groundwater by persulfate oxidation

Researchers in Taiwan performed field trials on the ability of persulfate to remediate trichloroethane (TCE) contaminated groundwater.  The purpose of the field trial was to (1) evaluate the efficacy of TCE treatment using persulfate with different injection strategies; (2) determine the persistence of persulfate in the aquifer; (3) determine the persulfate radius of influence and transport distance; and (4) determine the impact of persulfate on indigenous microorganisms during remediation.

The researchers discovered that persulfate removed up to 100% TCE under specific conditions.  Overall, they found a single, higher does of persulfate was more effective at destroying TCE than two separate, smaller doses.

Results show that sequential injections of a large amount of persulfate are suggested to maintain good long-term performance for TCE treatment. This paper is available at http://pubs.rsc.org/en/content/articlehtml/2018/ra/c7ra10860e.

Evolution of Emergency Management

by Lee Spencer, Spencer Emergency Management Consulting

You would have to be living under a rock to have not heard the resounding thud of the Ontario Auditor General’s report on the state of emergency management in Canada’s most populated province hitting the desks of the emergency management community in Canada (report) . I for one was not shocked by the findings and believe most jurisdictions in Canada would see similar criticism if subject to an OAG review.

For generations, provincial level emergency management has been an after thought.  Historically staffed by second career fire/police/military retirees who were expected to be seen and not heard.  These legacy EMOs were counted on to create order in the otherwise chaotic response phase of large scale disaster and otherwise quickly to be ignored again once the situation was restored and recovery programs began to hand out government grants.

After 9/11 it was clear to elected officials that the public had an expectation of the EMO cavalry galloping in to defeat any hazard, risk or terrorist.  But the costs and the growth that would be needed to meet that expectation could not compete with the schools, hospitals, roads and bridges built to ensure tangible things could be pointed to when an election rolled around.  After all the last thing most governments want claim at election time is they added more civil servants.

So in this era of increased public expectation, EMOs were given very little new resources to modernize and adapt to the new reality.  Provincial EMOs were left to the task of preparedness and response in the modern context with resources more suited to the National Survival primordial ooze from which provincial EMOs emerged.

I am hopeful that the public shaming of our most densely populated economic engine, will lead to a national discussion of the investment required to truly meet the realities and expectations of modern emergency management.There are already several emerging national strategies that will aid in this effort, Canada’s emerging Broadband Public Safety Network and the expanding National Public Alerting Systems are modern capabilities that will go a long way to enhance capacity at even the most modest EMO.

We are also starting to see an expansion in post secondary degrees and diplomas which will lead to firmly establishing emergency management as a profession in Canada.  These emerging professionals will eventually take over the leadership roles from folks like me (second career), bringing with them the education and experience to combine the historical EMOs with modern thinking.

I know my former colleagues in the EMO’s across Canada are shifting uncomfortably at there desks at the moment waiting for their own leaders to ask how they compare to Ontario.  It would seem to me that if your not uncomfortable you just don’t get it.

_____________

About the Author

 Lee Spencer is founder and President of Spencer Emergency Management Consulting.  The company is focused on the strategic integration of emergency management concepts towards an outcome of resilience within a community, business or government.

 

This article was first published Spencer Emergency Management Consulting e-blog site.