Activated Carbon-Based Technology for In Situ Subsurface Remediation

The U.S. EPA Office of Superfund Remediation and Technology Innovation recently published a fact sheet about an emerging remedial technology that applies a combination of activated carbon (AC) and chemical and/or biological amendments for in situ remediation of soil and groundwater contaminated by organic contaminants, primarily petroleum hydrocarbons and chlorinated solvents.  The technology typically is designed to carry out two contaminant removal processes: adsorption by AC and destruction by chemical and/or biological amendments.

With the development of several commercially available AC-based products, this remedial technology has been applied with increasing frequency at contaminated sites across the country, including numerous leaking underground storage tank (LUST) and dry cleaner sites (Simon 2015).  It also has been recently applied at several Superfund sites, and federal facility sites that are not on the National Priorities List.

The fact sheet provides information to practitioners and regulators for a better understanding of the science and current practice of AC-based remedial technologies for in situ applications. The uncertainties associated with the applications and performance of the technology also are discussed.

AC-based technology applies a composite or mixture of AC and chemical and/or biological amendments that commonly are used in a range of in situ treatment technologies.  Presently, five commercial AC-based products have been applied for in situ subsurface remediation in the U.S.: BOS-100® & 200® (RPI), COGAC® (Remington Technologies), and PlumeStop® (Regenesis) are the four most commonly used commercial products.  CAT-100® from RPI is the most recent product, developed based on BOS-100®.  One research group in Germany also developed a product called Carbo-Iron®.  The AC components of these products typically are acquired from specialized AC manufacturers.  These types of AC have desired adsorption properties for chlorinated solvents and petroleum hydrocarbons.  Different products also have different AC particle sizes, which determine the suitable injection approach and the applicable range of geological settings.

Example of powdered activated carbon “fracked” into the subsurface under high-pressure, causing preferential pathways into existing monitoring wells (Photo Credit: Regenesis)

 

In Situ Treatment Performance Monitoring: Issues and Best Practices

The U.S. EPA recently released an issue paper (EPA 542-F-18-002) that describes how in situ treatment technologies may impact sampling and analysis results.  The paper discusses the best practices to identify and mitigate issues that may affect sampling and analysis.

The utility of monitoring wells for performance or attainment monitoring is based on the premise that contaminant concentrations measured in the wells are representative of aquifer conditions. However, during in situ treatment, various biogeochemical and hydrogeological processes and sampling and analysis procedures may affect the representativeness of the monitoring well and sample quality, which may not be adequately considered in current remediation practice.

A properly designed monitoring network that anticipates the distribution of amendments after injection would minimize impacts to monitoring wells.  However, predicting amendment distribution prior to injection is challenging such that impacts to monitoring wells are likely.

The purpose of The U.S. EPA issue paper is to:
• describe how in situ treatment technologies may impact sampling and analysis results used to monitor treatment performance; and
• provide best practices to identify and mitigate issues that may affect sampling or analysis.

The U.S. EPA issue  paper discusses eight potential sampling or analytical issues associated with groundwater monitoring at sites where in situ treatment technologies are applied. These issues are grouped under three topic areas:
• Issues related to monitoring wells (Section 2).
• Representativeness of monitoring wells (Section 3).
• Post-sampling artifacts (Section 4).

The paper presents issues that pertain to collecting water samples directly from a monitoring well and does not discuss the use of other sampling techniques, such as passive diffusion bags or direct push groundwater sampling.

Canadian National Brownfield Summit – June 13th 2018

Learning from the Past; Charting the Future
Attend Canada’s First Brownfield Summit, hosted by CBN

CBN is pleased to host the first-ever Brownfield Summit as this year’s edition of our annual conference. Join us in
Toronto June 13. The summit will feature:

  • Our popular Cross-country Check-up: a session on recent regulatory changes and an opportunity to learn about new initiatives from our panel of regulators
  • Legal Update: case law shapes our practice as brownfielders. This session will feature presentations on the most recent court cases affecting brownfields
  • Emerging Technology: focused presentations on the technological trends that will affect your brownfield practice today and in the future
  • NRTEE +15: the cornerstone of the Summit. Revisit the 2003 National Round Table on the Environment and the Economy (NRTEE) report as we find out what has worked, what still needs to be done, and what challenges are emerging. Then, join us in a discussion and determination of the brownfield agenda for the next few years

This will be a working event, so be prepared – bring the knowledge you’ve gained as a brownfield practitioner and your insights into brownfield redevelopment/reuse, roll up your sleeves and set the stage for the future of brownfields in Canada!

Register Today!

Clean-up of Radioactive Material in Port Hope Finally Underway

After decades of study and planning, the clean-up or radioactive contamination in the community of Port Hope, Ontario is finally underway.  The Town of Port Hope, located approximately 100 km (60 miles) east on Toronto on Lake Ontario, has an estimated 1.2 million cubic metres (1.5 million cubic yards) of historic low-level radioactive waste scattered at various sites throughout the town.

The contaminated soil and material will be excavated to moved to the LongTerm Waste Management Facility, which is essentially an engineered aboveground landfill where the waste will be safely contained, and the long-term monitoring and maintenance of the new waste management facility.

Other historic low-level radioactive waste – primarily soil contaminated with residue ore from the former radium and uranium refining activities of Eldorado Nuclear — and specified industrial waste from various sites in urban Port Hope will be removed and safely transported to the new facility.

The historic low-level radioactive waste and contaminated soil, located at various sites in the Municipality of
Port Hope, are a consequence of past practices involving the refining of radium and uranium by a former federal Crown Corporation, Eldorado Nuclear Limited, and its private-sector predecessors. These waste materials contain radium-226, uranium, arsenic and other contaminants resulting from the refining process.

The historic waste and surrounding environment are monitored and inspected regularly to ensure the waste does not pose a risk to health or the environment. As part of the Port Hope Area Initiative (PHAI) construction and clean-up phase, the waste will be excavated and relocated to the new Port Hope long-term waste management facility.

In an interview with CBC, Scott Parnell is the General Manager of the Port Hope Area Initiative, which is in charge of the cleanup. He says that after decades of planning, the first loads of an estimated 1.2 million cubic metres of historic low-level radioactive waste will be on the move.

Scott Parnell, general manager of the Port Hope Area Initiative, stands near the town’s harbour.

“There’s been a lot of planning a lot of studies a lot of determination into how to approach the work safely, but this will be the first time we will be removing waste from the community,” said Parnell, who has overseen similar operations in Washington state and Alaska.

The $1.28-billion cleanup operation is a recognition by the federal government that the waste is its “environmental liability.” The radioactive tailings were the byproduct of uranium and radium refining operations run by Eldorado, a former Crown corporation, between 1933 and 1988.

Parnell says that the tailings were given away for free, which helps explain how the contamination was spread through the town.

“So, basically they offered it up and it was used for fill material to level up people’s backyards, for building foundations, for those kinds of things. So, that’s how the material got spread around the community,” Parnell said.

Parnell says an estimated 800 properties may be affected, but says there’s no indication the low levels of radiation are dangerous.

“There’s little human risk associated with the waste that’s identified here in Port Hope,” he said.

The first wastes to be remediated are currently stored under tarps at three locations including the Centre Pier, the Pine Street North Extension in the Highland Drive Landfill area and at the municipal sewage treatment plant. The Centre Pier is the first site to be remediated.

Aerial image of the first locations to be remediated. (source: Canadian Nuclear Laboratories)

 

 

Environmental charges laid against Husky Energy Inc. and Husky Oil Operations Limited

Environment Canada and Climate Change (ECCC) recently laid a number of charges against Husky Energy Inc. and Husky Oil Operations Limited relating to the blended heavy crude-oil spill, in July 2016, which impacted the North Saskatchewan River, near Maidstone, Saskatchewan. The Government of Saskatchewan also filed a charge under the Environmental Management and Protection Act, 2010. These charges result from a 19-month joint federal-provincial investigation.

There are a total of ten charges which include one charge under subsection 36(3) of the federal Fisheries Act, one charge under subsection 38(5) of the federal Fisheries Act, six charges under subsection 38(6) of the federal Fisheries Act, one charge under the federal Migratory Birds Convention Act, 1994, and one charge under Saskatchewan’s Environmental Management and Protection Act, 2010.

The first appearance was at the end of March at the Lloydminster Provincial Court office.  According to the Premier of Saskatchewan’s office, the company faces a possible maximum $1 million fine.

Shoreline cleanup for the Maidstone-area oil spill (Jason Franson/Canadian Press)

Saskatchewan Minister of Environment Dustin Duncan said the spill led to significant changes in the provincial Pipelines Act; changes that include greater regulation, auditing powers, penalty provisions and licensing flowlines.

“We take this very seriously. There, to my knowledge, hasn’t been a charge with respect to the unintended release of oil from a pipeline in the province’s history,” he told reporters in late March.

Duncan said the site cleanup was completed by the end of last year, but Husky will have to work with the province’s Water Security Agency and the Ministry of Environment to make sure nothing else is required.  He said he expects full co-operation.

“In the last year, despite a very unsettling situation, Husky was very responsive when it came to the cleanup but also responding to the concerns by First Nations, by communities along the river, as well as to the requests that were made by the government department,” Duncan said.

All charges are currently before the Court, and they have not yet been proven. Under Canadian law, those charged are presumed innocent until proven guilty. Therefore, Environment and Climate Change Canada and Saskatchewan’s Water Security Agency, which has a responsibility for the specific charge under the provincial Environmental Management and Protection Act, 2010, will not be commenting further at this time.

 

SJC Clarifies Statute of Limitations for Contaminated Property Damage Claims but Raises Questions of Application

by Marc J. GoldsteinBeveridge & Diamond PC

Plaintiffs with property damage claims under the Massachusetts cleanup law have more time to bring their claim than might be expected under the three-year statute of limitations according to a recent ruling by the top Massachusetts court.  The Supreme Judicial Court ruled that the statute of limitations begins running when the plaintiff knows that there is damage to the property that is “permanent” and who is responsible for the damage, pointing to the phases of investigation and remediation in Massachusetts’ regulatory scheme as signposts for when a plaintiff should have that knowledge.  Grand Manor Condominium Assoc. v. City of Lowell, 478 Mass. 682 (2018).  However, the Court left considerable uncertainty about when the statute of limitations might begin for arguably more temporary property damages such as lost rent.

In this Google image, the Grand Manor condominium complex is visible at the center-right.

In this case, the City of Lowell owned property that it used first as a quarry and then as a landfill in the 1940s and 50s before selling the property in the 1980s to a developer.  The developer constructed a condominium project on the site and created a condominium association soon thereafter. As part of work to install a new drainage system in 2008, the contractor discovered discolored soil and debris in the ground.  Subsequent sampling indicated that the soil was contaminated and that a release of hazardous materials had occurred.  The condo association  investigated in early 2009, and MassDEP issued notices of responsibility to both the condo association as well as the city in May 2009.  The city assumed responsibility for the cleanup and worked the site through the state regulatory process known as the Massachusetts Contingency Plan (MCP).  In the city’s MCP Phase II and III reports in June 2012, it concluded that the contamination was from the city’s landfill operations, that it would not be feasible to clean up the contamination, and proposed a pavement cap and a deed restriction.

The condo association and many of its members filed suit in October 2012 for response costs under Chapter 21E, § 4 and damage to their property under G.L. c. 21E, § 5(a)(iii).  At trial, the jury awarded the plaintiffs response costs under Section 4 but found that the plaintiffs had failed to prove that their property damage claim was brought within the three-year statute of limitations for such claims under G.L. c. 21E, § 11A.  The Supreme Judicial Court took the case on direct appellate review.

Section 11A provides that an action to recover damage to real property “be commenced within three years after the date that the person seeking recovery first suffers the damage or within three years after the date the person seeking recovery of such damage discovers or reasonably should have discovered that the person against whom the action is being brought is a person liable…”  Quoting Taygeta Corp. v. Varian Assocs., Inc., 436 Mass. 217, 226 (2002), the Court summarized this as a requirement that the claim must be brought within three years of when plaintiff “discovers or reasonably should have discovered [1] the damage, and [2] the cause of the damage.”

The Court quickly agreed that “the damage” referred to in Section 11A was, for these purposes, the property damages of Section 5 and moved on to the plaintiffs’ contention that the limitations period should not run until they discovered or reasonably should have discovered that the damage was “permanent” or, in other words, not reasonably curable.  Until that time, they argued, they could not know if they had a property damage claim because the site could be fully remediated.

The Court examined the application of the statute of limitations in the context of the statutory scheme for investigating and remediating sites in Massachusetts.  The Court found that the primary purpose of Chapter 21E is to clean up environmental contamination and to ensure responsible parties pay for the costs of that cleanup.  As a result, the statute prioritizes “performance and financing of cleanup efforts, and then considers the calculation of property damage that cannot be cured by remediation and remediation cost recovery.”

In interpreting the statute of limitations, the Court crystalized the question as “whether the word ‘damage’ in § 11A(4) refers specifically to damage under § 5, that is, damage that cannot be cured and compensated by the cleanup and cleanup cost recovery processes defined by the MCP and §§ 4 and 4A, such that the limitations period does not begin to run until the plaintiff knows there is residual damage not subject to remediation and compensation.”  In order to have knowledge that a plaintiff has suffered damage that is not curable by the MCP remediation process, the MCP process must have run sufficiently to know that § 5 damages exist – that there is contamination that will not be addressed through remediation leaving the property at a diminished value.  Since the liable party is required to determine the extent of the damage in Phase II and evaluate available remedies in Phase III of the MCP, as the Court noted, “[i]t would make little sense to require the plaintiff to independently determine whether residual property damage exists prior to the completion of these reports.” As a result, the Court concluded that the statute of limitations did not start to run until the plaintiff became aware that the site would not be fully remediated in the Phase II and III reports in June 2012 months before they filed their lawsuit.  Exactly what constitutes full remediation remains to explored in further cases, as the range of outcomes from achieving background conditions, implementing deed restrictions, reaching temporary solutions, or even leaving just a few molecules of contamination left behind could impact this analysis.

The Court contended that this interpretation of the statute of limitations provides a “prescribed and predictable period of time” within which claims would be time barred, given that there are timetables associated with the production and submission of MCP Phase II and III reports.  Under normal circumstances, the Court expected that a plaintiff will know it has a claim within five years of notifying MassDEP of contamination.

Despite the Court’s pronouncement that it had provided predictability for these types of claims, the statute of limitations for non-permanent property damages, such as lost rental value, or for sites where there is a long-term temporary solution in place, remain uncertain.  Lawyers and clients evaluating how and when to bring claims for temporary and permanent damages will need to carefully evaluate a range of potential options in pursuing a preferred single case for property damage without unacceptable risk that an uncertain statute of limitation may have run.

The article was first published at the Beveridge & Diamond website.

Beveridge & Diamond’s Massachusetts office assists parties at all phases of contaminated sites, guiding clients through the MCP investigation and remediation process and prosecuting and defending claims in court for cost recovery and property damage.  For more information about this practice, contact Marc Goldstein or Jeanine Grachuk.

About the Author

Marc Goldstein helps clients resolve environmental and land use disputes and to develop residential, commercial, and industrial projects. He serves as the Managing Principal of Beveridge & Diamond’s Wellesley, Massachusetts office and the Chair of the firm’s Technology Committee.

Marc provides practical, cost-effective advice to clients with environmental contamination issues, whether those clients are cleaning up hazardous materials and seeking contribution from previous owners or adjacent landowners or facing claims under Chapter 21E or Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for their alleged role in contamination.

Chemical and Biological Remediation Tetrachloroethene – Case Study

Tetrachloroethene is the systematic name for tetrachloroethylene, or perchloroethylene (“perc” or “PERC”), and many other names.  It is a manufactured chemical that is widely used in the dry-cleaning of fabrics, including clothes. It is also used for degreasing metal parts and in manufacturing other chemicals. Tetrachloroethene is found in consumer products, including some paint and spot removers, water repellents, brake and wood cleaners, glues, and suede protectors.

Tetrachloroethene is a common soil contaminant. With a specific gravity greater than 1, tetrachloroethylene will be present as a dense nonaqueous phase liquid(DNAPL) if sufficient quantities are released. Because of its mobility in groundwater, its toxicity at low levels, and its density (which causes it to sink below the water table), cleanup activities are more difficult than for oil spills (which has a specific gravity less than 1).

In the case study, researchers from Manchester Geomicro, a geo-microbiology and molecular environmental science research group affiliated with the University of Manchester, used combined chemical and microbiological contaminant degradation processes to remediate tetrachloroethene at a contaminated site in Germany.

In the study, the researchers used Carbo-Iron®, an applied composite material consisting of colloidal activated carbon and embedded nanoscale zero valent iron (ZVI). In a recent long term study of a field site in Germany, it was injected into an aquifer contaminated with tetrachloroethene (PCE). Carbo-Iron® particles accumulated the pollutants and promoted their reductive dechlorination via a combination of chemical and microbial degradation processes.

Schematic illustrating Carbo-Iron® particle structure and key chemical and microbial dechlorination pathways

The presence of the dominant degradation products ethene and ethane in monitoring wells over the duration of the study indicates the extended life-time of ZVI’s chemical activity in the composite particles. However, the identification of the partial dechlorination product cis-dichlorethene (cis-DCE) at depths between 12.5m and 25m below ground level one year into the study, suggested additional microbially mediated degradation processes were also involved.

Hydrogen produced by the aqueous corrosion of ZVI contributed to a decrease in the redox potential of the groundwater up to 190 days promoting organo-halide reducing conditions that lasted for months after. The long lasting reducing effect of Carbo-Iron® is crucial to efficiently supporting microbial dehalogenation, because growth and activity of these microbes occurs relatively slowly under environmental conditions. Detection of increased levels of cis-DCE in the presence of various organohalide reducing bacteria supported the hypothesis that Carbo-Iron® was able to support microbial dechlorination pathways. Despite the emergence of cis-DCE, it did not accumulate, pointing to the presence of an additional microbial degradation step.

The results of state-of-the-art compound specific isotope analysis in combination with pyrosequencing suggested the oxidative degradation of cis-DCE by microorganism related to Polaromonas sp. Strain JS666. Consequently, the formation of carcinogenic degradation intermediate vinyl chloride was avoided due to the sequential reduction and oxidation processes. Overall, the moderate and slow change of environmental conditions mediated by Carbo-Iron® not only supported organohalide-respiring bacteria, but also created the basis for a subsequent microbial oxidation step.

This study, published in Science of the Total Environment (Vogel et al. 2018, vol. 628-629, 1027-1036) illustrates how microbes and nanomaterials can work in combination for targeted remediation. The work was led by collaborators (Katrin Mackenzie and Maria Vogel) at the Helmholtz Centre for Environmental Research in Leipzig, Germany, and adds to a growing portfolio of research highlighting the potential of Carbo-Iron® as an in situ treatment for contaminated groundwater.

 

Guideline for the Management of Sites Contaminated with Light Non-Aqueous Phase Liquids

Light Non-Aqueous Phase Liquid (LNAPL) Management is the process of LNAPL site assessment, monitoring, LNAPL Conceptual Site Model development, identification and validation of relevant LNAPL concerns, and the possible application of remediation technologies. The presence of LNAPL can create challenges at any site.  Examples of LNAPLs include gasoline, diesel fuel, and petroleum oil.

In 2009, the United States Interstate Technology and Regulatory Council (ITRC) published LNAPL-1: Evaluating Natural Source Zone Depletion at Sites with LNAPL (ITRC 2009b) and LNAPL-2: Evaluating LNAPL Remedial Technologies for Achieving Project Goals (ITRC 2009a) to aid in the understanding, cleanup, and management of LNAPL at thousands of sites with varied uses and complexities. These documents have been effective in assisting implementing agencies, responsible parties, and other practitioners to identify concerns, discriminate between LNAPL composition and saturation-based goals, to screen remedial technologies efficiently, to better define metrics and endpoints for removal of LNAPL to the “maximum extent practicable,” and to move sites toward an acceptable resolution and eventual case closure.

This guidance, LNAPL-3: LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies, builds upon and supersedes both previous ITRC LNAPL guidance documents in an updated, web-based format. LNAPL-1 and LNAPL-2 are still available for review; however, LNAPL-3 is inclusive of those materials with new topics presented and previous topics elaborated upon and further clarified.

This guidance can be used for any LNAPL site regardless of size and site use and provides a systematic framework to:

  • develop a comprehensive LNAPL Conceptual Site Model (LCSM) for the purpose of identifying specific LNAPL concerns;
  • establish appropriate LNAPL remedial goals and specific, measurable, attainable, relevant, and timely (SMART) objectives for identified LNAPL concerns that may warrant remedial consideration;
  • inform stakeholders of the applicability and capability of various LNAPL remedial technologies
  • select remedial technologies that will best achieve the LNAPL remedial goals for a site, in the context of the identified LNAPL concerns and conditions;
  • describe the process for transitioning between LNAPL strategies or technologies as the site moves through investigation, cleanup, and beyond; and
  • evaluate the implemented remedial technologies to measure progress toward an identified technology specific endpoint.

Initial development and continued refinement of the LCSM is important to the identification and ultimate abatement of site-specific LNAPL concerns. Figure 1-1 identifies the stepwise evolution of the LCSM, the specific purpose of each LCSM phase, and the tools presented within this guidance to aid in the development of the LCSM. As depicted, the LCSM is the driving force for identifying actions to bring an LNAPL site to regulatory closure.

LNAPL remediation process and evolution of the LNAPL conceptual site model (LCSM).

This guidance document is organized into sections that lead you through the LNAPL site management process:

  • Section 2 – LNAPL Regulatory Context, Challenges, and Outreach
    Section 2 identifies some of the challenges implementing agencies face when investigating, evaluating, or remediating LNAPL sites. These challenges include regulatory or guidance constraints, a lack of familiarity or understanding of LNAPL issues, and poorly or undefined objectives and strategies. This section also stresses the importance of identifying and communicating with stakeholders early in the process in order to address issues or concerns that can lead to delays or changes in strategy. Understanding and recognizing these challenges and concerns during development of a comprehensive LCSM can help reduce costs and lead to a more effective and efficient resolution at an LNAPL site.
  • Section 3 – Key LNAPL Concepts
    Section 3 provides an overview of key LNAPL terminology and concepts including LNAPL behavior following a release to the subsurface (i.e., how LNAPL spreads away from the primary release point, its behavior above and below the water table, and how its migration eventually stops and naturally depletes). An understanding of these basic terms and concepts is crucial for developing a comprehensive LCSM and an effective LNAPL management plan.
  • Section 4 – LNAPL Conceptual Site Model (LCSM)
    The LCSM is a component of the overall conceptual site model (CSM), and emphasizes the concern source (i.e., the LNAPL) of the CSM. The presence of LNAPL necessitates an additional level of site understanding. The unique elements of the LCSM are presented as a series of questions for the user to answer to help build their site-specific LCSM. Ultimately, a thoroughly-developed, initial LCSM provides the basis for identifying the LNAPL concerns associated with an LNAPL release.
  • Section 5 – LNAPL Concerns, Remedial Goals, Remediation Objectives, and Remedial Technology Groups
    Section 5 describes the decision process for identifying LNAPL concerns, verifying concerns through the application of threshold metrics, establishing LNAPL remedial goals, and determining LNAPL remediation objectives. This section also introduces remedial technology groups, the concept of a treatment train approach, and how to transition between technologies to address the identified LNAPL concern(s) systematically and effectively. It is important to understand the content of this section prior to selecting and implementing an LNAPL remedial strategy.
  • Section 6 – LNAPL Remedial Technology Selection
    Section 6 describes the remedial technology screening, selection, and performance monitoring process. This section begins by identifying technologies recognized as effective for mitigating specific LNAPL concerns and achieving site-specific LNAPL remediation objectives based on the collective experience of the LNAPL Update Team. The LNAPL Technologies Appendix summarizes each of the technologies in detail and presents a systematic framework to aid the user in screening out technologies that are unlikely to be effective, ultimately leading to selection of the most appropriate technology(ies) to address the specific LNAPL concerns.

This guidance also includes relevant, state-of-the-science appendices for more detailed information on LNAPL specific topics:

  • LNAPL Technologies Appendix 
    This appendix describes in more detail each of the 21 LNAPL technologies introduced in the main document. The A-series tables describe information to evaluate the potential effectiveness of each technology for achieving LNAPL goals under site-specific conditions. Information includes the basic remediation process of each technology, the applicability of each technology to specific remedial goals, and technology-specific geologic screening factors. The B-series tables describe information to evaluate the potential implementability of each technology considering the most common site-specific factors. The C-series tables describe the minimum data requirements to make a final technology selection through bench-scale, pilot, and/or full-scale testing; they also describe metrics for tracking remedial technology performance and progress.
  • Natural Source Zone Depletion (NSZD) Appendix
    This appendix provides a technical overview of NSZD for LNAPL and the methods by which rates can be estimated and measured. It also provides a discussion of long-term LNAPL site management and how NSZD can be applied as a remedy including decision charts to support integration of NSZD and case studies demonstrating its use. For this document, the original ITRC NSZD document (ITRC LNAPL-1) was updated and incorporated into the main body and appendix.
  • Transmissivity (Tn) Appendix
    LNAPL transmissivity has application throughout the life cycle of a LNAPL project. This appendix provides an understanding of how transmissivity connects to the broader framework for LNAPL management including LNAPL recovery and mobility, and the potential for NSZD to decrease LNAPL transmissivity and mobility over time.
  • Fractured Rock Appendix
    This appendix describes the behavior and differences of how LNAPL behaves in fractured bedrock formations. While some of the same physical principles apply for multiphase flow in fractured aquifers as in porous aquifers, unique characteristics of finite and restricted fluid flow paths can lead to unexpected results in fractured settings.
  • LNAPL Sheens Appendix
    This appendix details how LNAPL sheens form, the concerns and challenges of sheens, and potential sheen mitigation technologies.

LNAPL Contamination of the Subsurface

Microbial Biotechnology in Environmental Monitoring and Cleanup

A new book on the advances in microbial biotechnology in environmental monitoring and clean-up has just be published by IGI Global.  The book is part of the Advances in Environmental Engineering and Green Technologies Book Series.

In the book, the authors state that pollutants are increasing day by day in the environment due to human interference. Thus, it has become necessary to find solutions to clean up these hazardous pollutants to improve human, animal, and plant health.

Microbial Biotechnology in Environmental Monitoring and Cleanup is a critical scholarly resource that examines the toxic hazardous substances and their impact on the environment. Featuring coverage on a broad range of topics such as pollution of microorganisms, phytoremediation, and bioremediation, this book is geared towards academics, professionals, graduate students, and practitioners interested in emerging techniques for environmental decontamination.

This book is a collection of various eco-friendly technologies which are proposed to under take environmental pollution in a sustainable manner. the role of microbial systems has been taken as a tool for rapid degradation of xenobiotic compounds. Application of microbes as bio-inoculants for quality crop production has been emphasized by some authors. Conventional method of bioremediation using
hyper-accumulator tree species has been given proper weightage. The emerging role of nanotechnology in different fields has been discussed. The contents of book are organized in various sections which deal about microbial biodegradation, phytoremediation and emerging technology of nanocompounds in agriculture sector.

Chapter 18, which covers phytoremedation, acknowledges that environmental pollution with xenobiotics is a global problem and development of inventive remediationtechnologies for the decontamination of impacted sites are therefore of paramount importance.
Phytoremediation capitalizes on plant systems for removal of pollutants from the environment.  Phytoremediation is a low maintenance remediation strategy and less destructive than physical or chemical remediation.  Phytoremediation may occur directly through uptake,translocation into plant shoots and metabolism (phytodegradation) or volatilization (phytovolatilization) or indirectly through plant microbe-contaminant interactions within plant root zones(rhizospheres).  In recent years, researchers have engineered plants with genes that can bestow superior degradation abilities. Thus, phytoremediation can be more explored, demonstrated, and/or implemented for the cleanup of metal contaminants, inorganic pollutants, and organic contaminants.

Topics Covered

The 400-page, 20 chapter book covers many academic areas covered including, but are not limited to:

  • Bio-Fertilizers
  • Bioremediation
  • Microbial Degradation
  • Microorganisms
  • Organic Farming
  • Pesticide Biodegradation
  • Phytoremediation

 

 

Using GPS trackers to fight toxic soil dumping

As reported by the CBC News and the Montreal Gazette, the Province of Quebec and the City of Montreal are joining forces to try to crack down on a possible link between organized crime and the dumping of contaminated soil on agricultural land.

The solution? A GPS system that can track where toxic soil is — and isn’t — being dumped.

According to the province, there are about two million metric tonnes of contaminated soil to be disposed of every year.

Toxic soil is supposed to be dumped on designated sites at treatment centres. But the Sûreté du Québec has confirmed it believes members of organized crime have been dumping soil from contaminated excavation sites onto farmland.

Quebec Provincial police confirm they are investigating a possible link between organized crime and the dumping of contaminated soil.

“It’s a constant battle. The city and all municipalities have to be very vigilant about any types of possible corruption,” said Montreal Mayor Valérie Plante.

“What we are talking about today supports a solution, but again, we always have to be proactive.”

The new pilot project, called Traces Québec, is set to launch in May. Companies would have to register for the web platform, which can track in real time where soil is being transported — from the time it leaves a contaminated site to the time it’s disposed of.

Some environmentalists say they’re concerned about the impact the toxic soil has had on agricultural land where it’s been dumped. They’re also uncertain about how a computerized tracking system will put an end to corruption and collusion.

“Right now, there’s no environmental police force in Quebec so there have been investigations into these toxic soils being dumped but unfortunately nobody’s been held accountable yet,” said Alex Tyrrell, leader of the Quebec Green Party.

“There’s really a lack of a coherent strategy for how Quebec is going to decontaminate all of these different toxic sites all over the province. There’s no announcement of any new money.”

The city and the province say this is a first step at addressing the issue and more announcements will be on the way in the coming months.

The pilot project — a joint effort with the city of Montreal — will test a system, known as Traces Québec, that uses GPS and other technologies to track contaminated soil. The first test case will involve a city plan to turn a former municipal yard in Outremont into a 1.7-hectare park. Work is to start in the fall.  All bidders on the project will have to agree to use the Traces Québec system.

Using the system, an official cargo document is created that includes the soil’s origin and destination and its level of contamination. Trucks are equipped with GPS chips that allow officials to trace the route from pickup to drop-off.

Mayor Valérie Plante said the pilot project is “a concrete response to a concrete problem.”

She said she wants to protect construction workers and residents by ensuring contaminated soil is disposed of properly. The city also wants to make sure the money it spends on decontamination is going to companies that disposed of soil safely and legally.

“Municipalities have to be very vigilant about any types of possible corruption,” she said. “We know there are cracks in the system and some people have decided to use them and it’s not acceptable.”

Plante said Montreal will study the results of the pilot project before deciding whether to make the system mandatory on all city projects.

The Traces Québec system was developed by Réseau Environnement, a non-profit group that represents 2,700 environmental experts.

Pierre Lacroix, president of the group, said today some scofflaws dispose of contaminated soil illegally at a very low cost by producing false documents and colluding with other companies to circumvent laws.

He said the Traces Québec system was tested on a few construction sites to ensure it is robust and can’t be circumvented. “We will have the truck’s licence plate number, there will be GPS tracking, trucks will be weighed,” Lacroix said.

“If the truck, for example, doesn’t take the agreed-upon route, the software will send an alert and we’ll be able to say, ‘Why did you drive that extra kilometre and why did it take you an extra 15 minutes to reach your destination?’”

Organized crime can be creative in finding new ways to avoid detection and Lacroix admitted “no system is perfect.”

But he noted that “at the moment, it’s anything goes, there are no controls. Technology today can help take big, big, big steps” toward thwarting criminals.

With files from CBC reporter Sudha Krishnan

How the GPS tracking system will work