Technology Simultaneously Measures 71 Elements in Water

Researchers at New York University (NYU) recently developed a new method for simultaneous measurement of 71 inorganic elements in liquids — including groundwater. The method, utilizing sequential inductively coupled plasma-mass spectrometry, makes element testing much faster, more efficient, and more comprehensive than was possible in the past.

The NYU researchers studied samples of liquid from a variety of sources worldwide, including tap water from a New York City suburb, snow from Italy and Croatia, rain from Brazil and Pakistan, lake water from Switzerland and Croatia, and seawater from Japan and Brazil.  Testing each sample results in a distinct elemental pattern, creating a “fingerprint” that can help differentiate between substances or trace a liquid back to its environmental origin.

The method—developed by researchers at the isotope laboratory of NYU College of Dentistry and described in the journal RSC Advances, published by the Royal Society of Chemistry—may be used to explore and understand the distribution of inorganic elements beyond the few that are typically measured. It has implications for fields such as nutrition, ecology and climate science, and environmental health.

An analytical technique called inductively coupled plasma mass spectrometry (ICP-MS) is used to measure elements. Historically, ICP-MS instruments have measured elements sequentially, or one by one, but a new type of ICP‐MS instrument at NYU College of Dentistry and roughly two dozen other places around the world has the potential to measure the complete range of inorganic elements all at once.

NYU ICP-MS

“Because of this new method, our mass spectrometer can simultaneously measure all inorganic elements from lithium to uranium. We’re able to measure the elements in far less time, at far less expense, using far less material,” said Timothy Bromage, professor of biomaterials and of basic science and craniofacial biology at NYU College of Dentistry and the study’s senior author.

This technological advancement may help to fill gaps in our understanding of element distributions and concentrations in substances like water. For instance, the U.S. Environmental Protection Agency monitors and sets maximum concentration limits for 19 elements in drinking water considered to be health risks, yet many elements known to have health consequences—such as lithium or tin—are neither monitored nor regulated.

“The elemental mapping of concentration levels in bottled and tap water could help to increase our understanding of ‘normal’ concentration levels of most elements in water,” said Bromage.

Bromage and his colleagues designed a method for using simultaneous ICP-MS to detect 71 elements of the inorganic spectrum involving a specific set of calibration and internal standards. The method, for which they have a patent pending, routinely detects elements in seconds to several minutes and in samples as small as 1 to 4 milliliters.

In each sample,​ Bromage and ​his team found ​a distinct ​“​fingerprint”​ or elemental ​pattern, ​suggesting that ​samples can be ​recognized and ​differentiated ​by these ​patterns. The ​elemental ​content of ​water, for ​example, ​typically ​reflects its ​natural ​environment, so ​understanding ​the elemental ​composition can ​tell us if ​water had its ​origins from a ​source with ​volcanic rock ​versus ​limestone, an ​alkaline rock.

GFL Fined $300,000 for illegal sale of PERC

On December 10, 2018, GFL Environmental Inc. was sentenced after pleading guilty in the Ontario Court of Justice to violating federal environmental legislation. The company was fined $300,000.

The charges were laid January 2017 after inspectors determined that GFL had supplied tetrachloroethylene, also known as PERC, to nine dry cleaning operations in Toronto, Newmarket, Scarborough, Mississauga, Waterloo, London and Cambridge that had not adhered to containment measures required by law.  According to an indictment filed with the court at that time, infractions noted by enforcement officers included inadequate wastewater containment systems and floor drain plugs that were not resistant to PERC.

The company, along with president and CEO Patrick Dovigi, vice-president of sales and marketing John Petlichkovski, and Louie Servos, identified as a GFL employee, were each charged with 16 counts under the Canadian Environmental Protection Act, 1999, according to the indictment.

The resolution presented in court on December 10th saw GFL pleading guilty to two counts. The remaining charges were withdrawn at the request of the Crown.

After an investigation led by Environment and Climate Change Canada enforcement officers, charges were laid and GFL Environmental Inc. pleaded guilty to two counts of contravening the Tetrachloroethylene (Use in Dry Cleaning and Reporting Requirements) Regulations (SOR 203/79) under the Canadian Environmental Protection Act, 1999 for selling tetrachloroethylene, commonly referred to as “PERC” to owners or operators of dry-cleaning facilities that did not meet regulatory standards.

GFL was fined $150,000 for each offence; the minimum fine for a first-time offender is $100,000. The Canadian Environmental Protection Act, 1999 allows courts to fine offenders up to a maximum of $4 million.

SOR 203/79 prohibits anyone from selling tetrachloroethylene to dry cleaners unless the dry-cleaning facility is compliant with the equipment specifications set out in the Regulations, which aim to reduce releases into the environment.

dry cleaning equipment

The Regulations are unique in that in places the onus of the seller of “PERC” to ensure that the buyer (typically dry cleaning facilities) have the proper equipment and training to prevent the release of PERC into the environment.

Tetrachloroethylene, used commercially since the early 1900s, has been an important chlorinated solvent worldwide. Tetrachloroethylene is a colourless, volatile liquid with an ether-like odour. It is also commonly referred to as perchloroethylene or PERC.

The most important routes of exposure to tetrachloroethylene for the general public are ingesting contaminated water and inhaling ambient air.  Improper disposal and releases from dry cleaning facilities and landfills can lead to groundwater contamination and potential environmental exposures.

PERC is a dense non-aqueous phase liquid (DNAPL), meaning that it is only slightly soluble and more dense than water.  When released in the subsurface, it will migrate downward, adsorbing into soil particles, slightly dissolving into groundwater, and eventually making its way to bedrock where it will pool and continue to dissolve into the groundwater.  As a result, PERC is very difficult to remediate from the subsurface.

As a result of this conviction, GFL Environmental Inc. will be added to the Environmental Offenders Registry.

The $300,000 fine will be directed to the Environmental Damages Fund.  The Environmental Damages Fund (EDF) is a specified purpose account, administered by Environment Canada, to provide a mechanism for directing funds received as a result of fines, court orders, and voluntary payments to priority projects that will benefit our natural environment. The Environmental Damages Fund (EDF) follows the Polluter Pays Principle to help ensure that those who cause environmental damage or harm to wildlife take responsibility for their actions.

Englobe and DST Join Forces

Englobe Corp. (“Englobe”), a Canadian-based company specializing in Soils, Material and Environmental Engineering, with an established network of more than 55 offices and 30 laboratories across Canada, recently acquired DST Group Inc. (“DST”). DST is a consulting engineering firm founded over 60 years ago with more than 165 employees and nine offices across Ontario and Western Canada. By joining forces, Englobe and DST increase their footprints with 14 offices and 350 staff in Ontario and nearly 160 staff across six offices in Western Canada.

Both companies will be well positioned to offer complementary services and expertise to each other’s clients in both geographical areas, including municipalities, provincial and federal governments, and private sector clients.

“DST shares the same important values as Englobe – focusing on our employees, offering innovative solutions to our clients and emphasizing high-quality project management. We are very happy to have found a partner in Englobe with whom we can build upon our mutual strengths and provide exciting new opportunities to both employees and clients. Our enhanced service offering in the regions will benefit clients nationwide,” says Maurice Graveline, former CEO of DST and new Vice President Operations Ontario at Englobe.

Stephen Montminy, Englobe Co-President, says: “We are extremely pleased to welcome DST to the Englobe family. Its well-established reputation will contribute to consolidating our presence in Ontario and Western Canada and I look forward to seeing the beneficial impacts as we grow together. This is an exciting continuation of our pan-Canadian growth path and creates many new jobs and business opportunities.”

In November, Englobe Corp eacquired McIntosh Lalani Engineering Ltd, a Calgary-based consulting engineering business specializing in geotechnical engineering and materials testing services.  McIntosh Lalani, established in 1997, will continue to operate under its existing name.

Englobe is backed by ONCAP, the mid-market investment arm of Canadian private equity firm Onex Corp. ONCAP invested in 2006 and later partnered in Englobe’s acquisitions and go-private deal in 2011.

Englobe Soil Treatment Facility

About Englobe Corp. and DST, a division of Englobe Corp.

Englobe offers a full range of services and solutions in soils, material and environmental engineering ranging from project design and environmental impact surveys, to technical know-how and consulting to, ultimately, regenerating the earth. The firm provides integrated, sustainable and innovative solutions designed to exceed the expectations of its clients, in both private and public sectors, who are looking for reliable technical expertise, know-how and capabilities customized to each of their projects. Englobe is proud to leverage more than 50 years of achievements in Canada, France and UK to go beyond expertise by empowering its dedicated people to share their work and passion for the benefit of our partners, communities and the environment. englobecorp.com

DST Group Inc. is a consulting engineering firm specializing in Environmental Engineering/Science, Hazardous Materials Consulting, Geotechnical Engineering, Construction Materials Testing, and collectively, Facilities Blasting/Demolition Engineering/Acoustics & Vibration Monitoring. The firm provides services in Ontario and Western Canada. DST was established in 1956 and is an employee-owned firm. dstgroup.com

Canadian NCC Awards Contracts for Environmental Site Assessment

The Canadian National Capital Commission recently award contracts to a number of environmental consulting firms to conduct environmental assessment of contaminated sites in Ottawa.  A number of firms were awarded contracts of $833,333 for providing contaminated site assessment services.  The firms were DST Consulting Engineers Inc., Geofirma Engineering Ltd., GHD Ltd., Golder Associates Ltd., SNC-Lavelin Inc., and Terrapex Environmental Ltd.

Under the contracts, the NCC may request as part of the purchase order process, but is not necessarily limited to the following consultant services under the resulting Agreements:

  • Provide environmental reports (either English or French);
  • Contaminated Site Identification and characterization associated with various sources of contamination;
  • Historical review of site activities, including consultation with municipal, provincial and federal regulatory agencies;
  • Field surveys;
  • Site investigations (sampling of contaminated or potentially contaminated media);
  • All parameters analyzed should be compared to both the Canadian Council of Ministers of the Environment (CCME) Federal Guidelines as well as the applicable provincial criteria;
  • Interpretation of laboratory analyses;
  • Contaminated area delineation for soil and groundwater, which includes coloured maps that clearly identify and illustrate the testing locations, the contaminants found, the dimensions of the contaminated volumes and the affected area;
  • Recommendations of further investigations, if required, with all the associated costs;
  • Provide guidance and expertise with Federal Regulation compliance;
  • Provide maintenance and repair services for existing monitoring infrastructure;
  • Evaluation of remediation technologies, which includes, identifying the different remediation options and the costs associated;
  • Evaluation of strategies to optimize recycling of material during remediation projects;
  • Completion of risk assessments (human health and ecological) under federal and provincial guidelines;
  • Provide Engineering Plans and Specification documents for remediation and construction projects (French & English);
  • Provide site surveillance during remediation and construction activities;
  • Provide project management and construction management services;
  • Provide landfill engineering and management services; and,
  • Provide long-term management strategies for complex contaminated sites.

The NCC has a number of development and rehabilitation projects underway in Ottawa including the redevelopment of LeBreton Flats, a property just west of Parliament Hill in Ottawa.  The property is contaminated from historical industrial activity and must be remediated before it can be redeveloped into a commercial and residential community.

In the past, the NCC spent $6.7 million to decontaminate the soil on a 5.7-hectare site. The process involved removing and remediating 110,000 cubic metres of soil.

With the current area awaiting remediation being just over three times that size at 21 hectares, RendezVous LeBreton, the development company that is partnering with the NCC to develop the site, has a considerably larger and undoubtedly more expensive amount of soil to remediate.

As of the Spring of 2018, the total cost of the soil decontamination at LeBreton Flats is undetermined at this time, but is estimated to be around $170 million, according to RendezVous LeBreton Group.

The empty land in LeBreton Flats awaits its redevelopment, but the soil that lies beneath its surface is in need of a cleanup, as well. Photo By: Meaghan Richens, Centretown News

 

Business Opportunities for Environmental Research and Development

The United States Department of Defense’s Strategic Environmental Research and Development Program (SERDP) is seeking environmental research and development proposals for funding beginning in FY 2020. Projects will be selected through a competitive process. The Core Solicitation provides funding opportunities for basic and applied research and advanced technology development. Core projects vary in cost and duration consistent with the scope of the work proposed.

The Statements of Need (SON) referenced by this solicitation request proposals related to the SERDP program areas of Environmental Restoration (ER), Munitions Response (MR), Resource Conservation and Resiliency (RC), and Weapons Systems and Platforms (WP).

The SERDP Exploratory Development (SEED) Solicitation provides funding opportunities for work that will investigate innovative environmental approaches that entail high technical risk or require supporting data to provide proof of concept.

Funding is limited to not more than $200,000 and projects are approximately one year in duration. This year, SERDP is requesting SEED proposals for the Munitions Response and Weapons Systems and Platforms program areas. All Core pre-proposals are due January 8, 2019. SEED proposals are due March 5, 2019. For more information and application instructions, see https://www.serdp-estcp.org/Funding-Opportunities/SERDP-Solicitations.

Environmental Industry M&A in 2018

Environmental Business International, Inc. (EBJ) recently published the 2018 Environmental Industry Mergers and Acquisitions.  The book provides an in-depth analysis of the mergers and acquisitions (M&A’s) that have occurred in the environmental industry in 2018.  Included in the publication are discussions on Stantec’s additions in the UK, Australia and New Zealand along with cultural fit in employee-ownership model at Golder.

The publication states that experts are calling 2018 as the “strongest year we have seen in this decade” with respect to M&A’s in the environment industry. According to the findings in the publication, M&A activity is at record levels and is up 20% over 2017. Some experts assert that Merger & Acquisition activity may be cresting in 2018, but many experts and deal-makers see scope for continued pace. Generally optimistic outlooks drive investment strategies of companies, private equity firms and corporate acquirers, but acquirers and sellers keep their correction contingency plans close at hand.

According the findings in the report, analysts, management consultants and investment bankers report that multiple factors are aligned to continue the strong pace of M&A and high valuations,

Exhibits in this 2018 Environmental Industry Mergers and Acquisitions edition of EBJ include:

  • Consolidation of U.S. C&E Industry 1990-2017
  • Top 10 U.S. Remediation Firms 2000-2016 (Gross Revenues in $mil)
  • Share of Top Companies in U.S. C&E Industry 2000-2017
  • Top 5 & 10 U.S. Environmental C&E Firms 1995-2017(Gross Environmental C&E Revenues in $mil)
  • A Decade of US M&A Activity in the AEC Industry
  • 2007-2018 Interstate M&A Deal Flow in AEC
  • 2018 Year-to-Date Heat Map of Regional AEC M&A Activity
  • Influence of Publicly-Traded Buyers in AEC M&A, 2007-2018
  • Influence of Private Equity in AEC M&A, 2013-2018
  • Most Prolific Buyers (2011 – YTD 2018)
  • Several revenue history and acquisition lists for profiled companies
  • Levels of Interest That Help Determine Value in AE Firms
  • U.S. M&A Activity in Environmental and Industrial Services: 2009-2018
  • M&A Activity in Environmental Services: Special Waste & Environmental Engineering & Consulting

For more information on the environmental C&E industry, visit Reports & DataPacks page.

Chemical hazard training using Simulator Detectors

by Steven Pike, Argon Electronics

The ability to deliver consistent, engaging and true-to-life chemical hazard detection training scenarios relies on regular access to realistic, hands-on equipment.

What’s vital is that these training tools replicate not only the readings and the responsiveness of real detectors, but that they also provide trainees with an authentic experience that recreates the potential challenges that they will face in actual incidents.

Training for CBRNe and HazMat threats

Planning exercises for modern-day CBRNe and HazMat threats has never been more complex, with the need to respond to anything from clandestine laboratory searches to major industrial incidents, chemical improvised explosive devices or terrorist threats.

And key to the success of any training scenario is the capacity for instructors to be able to create compelling training experiences that are straight-forward to set up and easy to repeat.

While training with Live Agents (LAT) can still have a role to play, it introduces a substantial degree of risk to instructors, students, their equipment and the environment – not to mention incurring greater cost, increased administrative effort and a heavier regulatory burden.

Simulant training is often viewed as presenting a safer “middle ground” for CBRNe and HazMat exercises, bringing with it the advantages of a more credible, real-life experience but at the same time reducing risk through the use of smaller, controlled quantities of substances.

But even in the most carefully managed of exercises, the use of simulants brings with it certain disadvantages. It can often restrict the breadth and variety of scenarios – for example, when they are required to be used in confined spaces, or where wind, temperature or training location can impact negatively on the learning experience.

It is also increasingly common for modern detectors to provide limited response to simulant sources, due to their highly developed interference rejection (IR) capabilities.

The good news though is that safe, high-quality and easily repeatable CBRNe/HazMat training needn’t be so complicated.

Simulator detectors for CBRNe and HazMat training

One solution that has revolutionized modern approaches to chemical detection training is the adoption of innovative and safe detector training aids that replicate the functionality of real devices.

These intelligent, electronic training tools place instructors in control, they are environmentally friendly, they can be set up in an unlimited variety of indoor and outdoor locations and they offer powerful after action review features.

Let’s now take a closer look at one specific example of a chemical hazard detector – the Smiths Detection LCD3.3 – and its simulator equivalent – the LCD3.3-SIM, also known in the USA as the M4A1 JCAD and M4A1 JCAD-SIM respectively.

The Smiths Detection LCD3.3

The Smiths Detection LCD3.3 is a person-worn device which is reported to be the most widely deployed chemical detector in use today.

It is used for the detection of Chemical Warfare Agents (CWAs) – including nerve, blood, blister and choking agents – as well as for the identification of a selected library of Toxic Industrial Chemicals(TICs). The detector also incorporates different operating modes ensuring optimal detection capability.

The detector is simple to operate, requires no calibration or routine maintenance and can log up to 72 hours of mission data for further analysis while user replaceable sieve packs reduce the need for factory based overhaul. A key benefit of this detector is its ability to specifically identify CWAs, however this advanced selectivity and makes simulant based training challenging.

The Argon LCD3.3-SIM

The LCD3.3-SIM is a training device that has been designed replicate the features and functionality of the actual LCD3.3.

The simulation detector responds to electronic sources that imitate the effects of chemical vapors, toxic substances and false positives and that realistically replicate the effects of wind direction and temperature, the depletion of sieve packs and batteries, confidence testing and the use of a survey nozzle.

With no requirement for simulants as part of training, there is zero possibility of environmental contamination or health and safety risk to instructors or students.

The device is compatible with a wide variety of other simulators (including simulators for the AP2C, AP4C, CAM, LCD3.2 and the RAID-M100) which means that multi-detector and multi-substance training can take place within the same scenario.

The inclusion of a remote control feature provides CBRNe and HazMat instructors with complete management of the exercise – from deciding on the effectiveness of decontamination drills, to simulating the effects of wind, temperature and persistency and the ability to instantly reset a scenario in readiness for a new exercise.

After Action Review (AAR) enables instructors to confirm that their students have set up and used the detector in accordance with the procedures for the real-life device. In the event of student error, the student performance reporting feature provides a detailed breakdown of their actions to assist with learning.

The use of innovative simulator detector training systems significantly increases personnel safety, as well as enhancing learning and easing regulatory pressures.

Such devices also place the instructor firmly in control of the exercise to ensure you’re delivering consistent, verifiable and measurable CBRNe/HazMat training outcomes.

This article was first published as a blog on the Argon Electronics website.

__________________________

About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a world leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators.

Access Hazmat Management Magazine via Twitter

Follow us on twitter at @hazmatmag for the latest news on contaminated sites, brownfields, spills and spill response, hazmat, and dangerous goods in Canada, North America and the world.

Did the City of Hamilton overpay for a Brownfield Site

As reported by the CBC, the City of Hamilton recently paid $1.75 million for a brownfield site that once sold for $2.  The property, located at 350 Wenworth Street North, sold for $2 a decade ago and then for $266,000 two years ago.

In the property was purchased in 2013 for $266,000, hundreds of barrels of toxic waste were discovered behind a fake wall.  The barrels contained coal tar byproducts and industrial solvents, and roof tar.  The new owner arranged for the proper disposal of the barrels.  The Ontario Environment Ministry confirmed  in  an e-mail to CBC that the waste had been from the building and it was decontaminated by the fall of 2017.  It also confirmed that the clean-up included the removal of approximately 200,000 litres of liquid waste.

The cleanup of the toxic property has been going on intermittently since 2010 (Photo Credit: Hamilton Spectator) photo

It is not known how much the clean-up of the 800 barrels of toxic waste cost, but the Hamilton Spectator quoted the owner  in 2017 that the clean-up would cost $650,000.

Property records for the building stretch all the way back to 1988, when Currie Products Limited spent a million dollars for 350 Wentworth. Currie ran a tar facility that went out of business there in the late 1990s, and was considered by many to be the company that originally polluted the site. Owner John Currie died in 2013.

Through the years, the building has changed hands multiple times for a wide swath of prices, ranging from that original million dollars, to $610,000 in 2007, to $2 in 2008, to the tax sale in 2016 and now, for $1.75 million. Over that time, building owners fought with each other and the province over who was actually responsible for cleaning up the site, in some cases heading to court in search of a resolution. For each sale, the price of the property reflected what buyers knew about the site at the time.

The city’s purchase of the property is all part of a reshuffling of buildings in the area to create a transit hub for the lower city like the Mountain Transit Centre at 2200 Upper James.

While it appears the city could have saved money by taking over the property when it was up for tax sale, that’s not really the case, officials say. The city does sometimes take carriage of properties after a failed tax sale, but woudn’t do so on a property like this one with environmental issues, Hamilton City Councillor Matthew Green told the CBC.  He added, “The city won’t take on the liability by policy.  The liability is way too big, because you don’t know what you’re buying … you have no idea what could be found or buried.”

The city bought 350 Wentworth St. N., which has required much cleanup over the years. Most recently, 200,000 litres of liquid waste was removed from the site in 2017 (Credit: The Hamilton Spectator)

 

 

 

Brantford Showcases its Brownfield Projects

Known as the Telephone City, Brantford may also become famous as one of the first municipalities in Canada to proudly showcase its brownfield projects.

Instead of hiding from its industrial past, the city is showcasing several brownfield projects and is encouraging residents and visitors to take the self-guided tour.  Eight projects in various stages of remediation or redevelopment are highlighted in the  tour.

Highlights of the the tour are the Greenwich Mohawk Site, Sydenham-Pear Site and Edward Gould Park.  The Greenwich Mohawk Site alone is over 50 acres and was remediated over the course of two years, starting in 2014.

 

 

 

The City is investing $5,000 per year to promote the tour and hopes to attract interested individuals, school groups, and others.  The tour itself provides participants with access to historical photos, newspaper articles and other project details through the tour website.

Users can access the Brownfields Discovery Tour online at Brantford.ca/BrownfieldsTour where they can follow along digitally or print a hard copy of the tour.

“The City of Brantford has become widely recognized as a leader for remediation, redevelopment and public education of brownfields,” said Amy Meloch, chair of the brownfields community advisory committee in an interview with the Brantford Expositor. “The tour is an exciting continuation of the work of the committee to raise awareness to both residents and visitors of the extensive work already accomplished in the city.”

The sites on the tour include those that are municipally and privately owned.  They are:

  • 186 Pearl St. – a 0.38-hectare site located in a residential area, this site was home to Brantford Emery Wheel Co. (1910-1920) and the Brantford Grinding Wheel Co. (1920-1939). Bay State Abrasives was involved in similar manufacturing operations there. The city removed an underground storage tank, removed the existing structures, cleaned the contaminated soil and planted sod at a cost of about $175,000. The property has been converted into a park.
  • 347 Greenwich St. and 22 and 66 Mohawk St. – Referred to collectively as the Greenwich Mohawk Brownfield Site, the companies and industry formerly housed on these properties are a significant part of the city’s history. The 27.9-acre 347 Greenwich property is the former site of Massey-Harris Co., established in 1891. It employed thousands of Brantford employees over the years. A 2005 fire destroyed most of the buildings and the city acquired the property in 2007.
  • 22 Mohawk St. – This 7.25-acre property has been home to Adam’s Wagon Co. and Brantford Coach and Body, later Canada Coach and Body, where military vehicles were manufactured during the Second World War. Later, Sternson Group was there.
  • 66 Mohawk St – The Brantford Plow Works, later Cockshutt Plow Co., was established here in 1877, making high-quality farm implements. The farm division was sold to White Farm Equipment in 1962. That company went bankrupt in 1985. The city acquired all three properties by 2007 and a two-year remediation started in 2014 at a cost of $40.5 million.
  • Sydenham Pearl site – Consists of two properties: 17 Sydenham St., the former Crown Electric, and 22 Sydenham, the former Domtar (Northern Globe) site. The sites served as the main locations for mass industry for almost a century. The city took over the properties 2004 and 2006. Remediation was done in 2015 and 2016 and a soil cap was installed. The site will be green space until next steps are explored by the city.
  • 85 Morrell St. – The city sold the property, once occupied by Harding Carpets Limited, to King and Benton Development Corporation, which cleaned and renovated the 10-acre property to include warehouses and offices for industrial use.
  • 168 Colborne St. West – This 11.5-acre property was the site of the former Stelco Fastners manufacturing plant. In 1999, it was purchased by King and Benton. Work is underway to redevelop the site for mixed uses, including multi-storey residential buildings.
  • 111 Sherwood St. – Home to Brantford Cordage Co. during the early 1900s. At its peak, the twine producer employed 700. It has remained active with a variety of commercial and industrial uses, including a brewery and fitness studio.
  • 232-254 Grand River Ave. – In 1891, this 4.87-acre site was developed as a cotton mill by Craven Cotton Mills Co. It then became Dominion Textiles Co. and then Penman’s Manufacturing Co. Textile manufacturing continued on the site for almost 100 years until it was sold to a land developer in 1984. It is now being remediated for a mix of affordable housing and market-rate townhouses.
  • 180 Dalhousie St. – The 0.52-acre site is a consolidation of four properties, which, over the years, housed various residential and commercial operations, including Castelli Bakery, which closed in 2011. Today, a four-storey student apartment building is there.

Greenwich-Mohawk Brownfield Site circa 2013