Decades Long Secret of Lead Contaminated Soil in Winnipeg

As reported by the CBC, testing performed on soil in several other Winnipeg neighbourhoods more than 10 years ago showed potentially dangerous levels of lead — but residents were never told about the results because the  government at the time withheld the information, according to documents obtained by CBC News.

Documents obtained by CBC through government sources reveal an extensive round of soil testing was conducted by the provincial government in 2007 and 2008 around Point Douglas, Wolseley, Minto and South Osborne.

Residential boulevards were targeted, as were playgrounds, schools and sports fields.

Two draft reports written 

At least two draft reports detailing the results were written in 2009 and 2011, as well as a draft news release and technical report. For reasons that remain unclear, the government never publicly released the reports.

Of the samples taken in the Point Douglas area, 17 came back positive for lead contamination above acceptable levels and a further 10 residential sites in other areas of Winnipeg also exceeded Canadian Council of Ministers of the Environment, or CCME, guidelines for lead levels.

Excerpt from the 2011 Report

A chart taken from a 2011 report that details lead levels found in residential boulevards in Point Douglas. A result of 140 ug/g — micrograms per gram, or parts per million — or higher exceeds national safety guidelines for human health protection. (Surface Soil Lead Levels in Winnipeg: 2007-2008)

The acceptable level is 140 parts per million. One result showed 2,240 ppm on Angus Street near Sutherland Avenue in Point Douglas.

According to the report, the possible causes of contamination in the city are historic use of leaded gas, a number of now-shuttered lead smelters, scrap recycling yards, the railyards and metal manufacturing operations.

At the sports field for Weston School — an elementary school located just off of Logan Avenue and 280 metres south of a now-closed smelter site — 19 soil samples came back with results that exceeded CCME guidelines.

Government officials could find no record of the Winnipeg School Division being told about the results or evidence that the sports field had been remediated.

A spokesperson for the province’s Sustainable Development department confirmed the documents were never publicly released by the previous government. He said residents and the school divisions were not informed of the results, according to people still working in the department.

He also said no soil remediation was done in response to the results of the report.

The Archibald Tot Lot, Hespeler Park, Maryland Park, Spence Tot Lot and Lord Nelson elementary school all had a least one sample showing unsafe levels of lead.

Locations of high lead contamination in the soil in Winnipeg Neigbourhoods

Children shouldn’t play in sports field: Professor

Francis Zvomuya, a professor of soil science at the University of Manitoba, wasn’t surprised by the test results but said some of the numbers were particularly alarming, including the high levels in Weston and in Point Douglas.

In the case of Weston School, the lead levels had increased since the 1980s, when the first round of tests were completed. Zvomuya said if no attempts were made to clean up the area in the past 10 years, children should not be playing there.

“The case that is particularly glaring is Weston elementary. When you look at the concentrations at the majority of sites [tested] … out of the 22 they looked at, only two sites were not contaminated,” he said.

“That is concerning when you look at the concentrations.”

He said there are a number of health issues that come with exposure to lead, including impaired neurological development and developmental delays in children, as well as learning difficulties.

Health Canada says even very small amounts of lead in the bloodstream can have harmful health effects and children are especially at risk.

Lead can affect their brain development, behaviour, blood and kidneys. Severe cases of lead poisoning are rare in Canada but can cause vomiting, diarrhea or convulsions.

Children are at risk of ingesting lead if they play in contaminated soil and put their hands in their mouth. Ongoing exposure puts people at higher risk of developing health complications.

“Every time you have a site that is frequented by kids or where kids spend a reasonable amount of time playing, then there is a concern — because then there is a risk of exposure to the contaminants,” Zvomuya said.

New testing in Point Douglas area

A senior official with the current government said that new testing of soil in the Point Douglas will be completed by the end of October.  A report on the results will be completed by December  2018 and publicly released.

Zvomuya was in charge of the soil tests that occurred last year in St. Boniface and will lead the new tests the government has ordered for the Point Douglas area.

The best way to clean up the contaminated soil is to bring in new soil to these areas, he said. He said the clean-up should be concentrated in the areas most frequented by children

“If you have a site where our kids play and where humans spend a lot of hours working or playing or doing recreational activities … then they have to be remediated,” he said.

“It may be expensive but that is the only way we can have people doing activities without facing the risk of lead poisoning.”

Gaps on the movement of dangerous goods in Northern Canada

As reported by the The Canadian Press, the Canadian federal government says it doesn’t know enough about how, when, and where dangerous goods move through the Canadian North, highlighting the potential risks of a major spill or other disaster.

As a result, the possible effects on public safety and the environment are also unclear, Transport Canada acknowledges.

The department is commissioning a study to help fill in the knowledge gaps and improve readiness when it comes to movement of goods ranging from explosives and flammable liquids to infectious substances and radioactive materials.

The effort will focus on regions north of the 55th parallel as well as on more southerly, but isolated, areas in eastern Manitoba and northern Ontario, says a newly issued call for bids to carry out the study.

The overall goal is to fully identify the hazardous substances transported throughout these areas and the major hubs that link to relevant airports, marine ports, ice roads, railroads, mines, refining sites, manufacturing plants and warehouses.

The information will help Transport Canada pinpoint potential risks and make decisions concerning safety regulations and compliance, the tender notice says.

A stark reminder of the difficulty of moving goods in northern Canada came when the only rail line to Churchill, Man., was flooded and it became impossible to deliver freight overland until an ice road was built.

There are also virtually no freight rail lines north of the 60th parallel, except for rail access to Hay River in the Northwest Territories, the notice says. Considering the seasonal nature of ice roads and ports, there are limited routes for movement of dangerous goods in or out of northern Canada and other remote areas, it adds.

The tenuous nature of northern transportation systems mean there are “gaps in information” about the kinds of dangerous goods transported, the volume of shipments and the sort of emergency response systems available.

“We continuously examine ways to make transportation in Canada safer for all and this assessment is part of our effort to ensure even greater knowledge regarding the handling of goods in the North,” said Transport Canada spokeswoman Annie Joannette.

She declined to provide additional information given the competitive tender process underway.

The most valuable element of the exercise could be the educational process of better informing people about the risks of transporting dangerous substances, said Rob Huebert, a northern studies expert at the University of Calgary.

“It’s always about the follow-through,” he said. “Because you can have all these exercises through the ying-yang, but if you’re not setting up the system properly and then maintaining the system, what’s the point of having it?”

Until now, Canada’s emergency preparedness efforts have largely been focused on maritime response and less on land-based accidents, he said.

“I think a lot of people always forget that the North is an area that is just so different from every place else.”

North American Rail Network (Transportation Safety Board of Canada)

Mesothelioma Awareness: Asbestos and Occupational Safety

by Sarah Wallace, Mesothelioma + Asbestos Awareness Center

For many years, the natural mineral known as asbestos was used in constructing buildings, insulation, roofing, and homes. Asbestos is heavily regulated in the United States today, but many people are still exposed daily to asbestos containing materials (ACMs) that still exist in buildings, structures, and homes. During demolition, DIY, or renovation projects, asbestos can become friable and people are then susceptible to inhaling the small fibers. When asbestos becomes lodged in the body, specifically in the lining of the lungs, abdomen, or heart, it can lead to lung cancer or mesothelioma.

Even though the use of asbestos has decreased dramatically in the United States since the late 20th century, mesothelioma is still the leading occupational cancer. This is because the disease can take up to 50 years to develop, and those who were exposed to asbestos prior to the 1980s are still being diagnosed today. On top of that, professionals who work in different industries that have a history of asbestos use, such as construction, manufacturing, and shipyard work, are still at risk of exposure they may come into contact with materials and products made before regulations were put in place. Due to the microscopic size of asbestos fibers and ambiguity around where the toxin could have been used in the past, it’s important for workers to stay educated on where asbestos might be hiding and what safety precautions to take on the job.

Occupations most at risk and how to stay safe:

Construction Workers– Because asbestos was used heavily in the construction of homes and other buildings, many construction workers have been exposed to asbestos, and they are still at risk for exposure. With ACMs still existing in buildings, approximately 1 million construction workers could still be vulnerable to asbestos annually. Today, professionals in the construction industry are at risk for first-hand exposure more than any other profession. Workers in multiple trades including roofers, carpenters, electricians, and masonry should be aware of asbestos as they work.

In order for workers to protect themselves, professionals in these fields should take the precaution of wearing the proper masks during any type of construction project. Understanding the age of the building and what asbestos looks like is also important because this could help workers know the risks associated with a certain structure, making them less vulnerable to exposure. Keep in mind that asbestos can exist in a variety of products including drywall, shingles, ceiling tiles, and insulation, so even those participating in DIY projects should be aware of where their health and safety could be at risk.

Firefighters– Asbestos fibers can be released into the air when a building or home catches on fire. This puts first responders like firefighters in danger of inhaling the toxin in the process of putting out a fire. This leaves firefighters at risk to develop peritoneal mesothelioma, which originates in the lining of the lungs after being inhaled.  While the initial danger to firefighters is the fire itself, even after the flames are put out, asbestos could be present in the air as the structure cools off. Firefighter equipment is designed to keep out hazardous materials like asbestos, but many people do not understand that certain risks persist even after the initial fire is put out. Asbestos fibers can attach to clothing, leading to the possibility of second-hand exposure for those who might come in contact with any type of clothing used at the scene of the fire.

In order to limit exposure to asbestos particles, firefighters should wear a certified self-containing breathing apparatus (SCBA) mask that covers the mouth and nose in order to protect themselves while on the job. They should also keep masks on even after the fire has been put out while debris is cooling, because asbestos fibers could still be in the air. To eliminate risks of exposure for family, friends, and colleagues, firefighters should also remove their gear before leaving the scene and wash off before returning home.

 Shipyard Workers– At one time, asbestos exposure was a large risk for laborers and those employed on ships. Due to the mineral’s strong and heat resistant attributes, was often used for things like boilers and steam pipes on Navy ships and shipyards. As a result, many shipyard laborers were exposed to asbestos, especially if they worked as electricians, painters, machinists, or “asbestos insulators.” This is one of the reasons veterans make up about 30 percent of mesothelioma diagnoses in the United States.

Shipyard workers are less likely to be exposed first-hand to asbestos today, but anyone working with older shipbuilding materials or piping should be aware of the possible risks and wear the appropriate masks to limit inhaling fibers. Workers who have been exposed in the past should let their primary care doctor know and stay up-to-date on appointments. Symptoms of mesothelioma specifically can often go undiagnosed because they are similar to symptoms of the flu, manifesting as a cough at first and eventually leading to shortness of breath and fever. If you know that you have been exposed, paying careful attention to your health and communicating with your doctor could lead to an early diagnosis, improving prognosis and life expectancy.

Preventing asbestos-related disease

 If you come across asbestos on the job, contacting a professional who knows how to handle the material will be the best way to move forward. No amount of asbestos exposure is safe, and handling the mineral should be taken seriously before proceeding with a project. Mesothelioma is a deadly but preventable cancer, if the correct steps are taken by employers and employees. Although asbestos has been heavily regulated over time, there is still not a ban on the material in the United States. Taking the time to check labels before using any products and educating others in your industry on how to protect themselves are sure ways to help bring an end to mesothelioma and other health issues caused by asbestos.

 

Nova Scotia Homeowner Fined for not Investigating Leaking UST

The Nova Scotia Department of the Environment recently fined a homeowner in Sydney (located on Cape Breton Island) with failing to obtain the services of a site professional to determine whether a leaking oil tank had caused contamination.

The regulator had issued two directives to the homeowner prior to filing the charge in court. The amount of the fine was $350. The homeowner has been given two years to complete any necessary remediation on his property. Being a homeowner is tough especially when you are moving towards retirement. Most invest in property to rent to get help with their mortgages, some even use their equity release to do this. If you are interested in having your equity released and want to know how much you have you might be interested in something like this equity release calculator for more information.

The Nova Scotia Department of the Environment Homeowner Guide to Heating Oil and Tank Systems provides information on how homeowners can lessen the environmental risk posed by above-ground heating oil tanks. The Province also has a Domestic Fuel Oil Spill Policy.

Fuel oil tanks owned by homeowners can leak and cause environmental damage (Photo Credit: NACHI.org)

Unsafe Levels of Contamination found in Edmonton Neighbourhood

As reported in the Edmonton Journal, unsafe levels of hazardous chemicals were found in unoccupied land near the property that was previously occupied by a wood treatment plant site.  However, the analytical results from soil samples taken from residential properties in the vicinity of the plant found no hazardous chemicals in the top level of soil.

An Alberta Health official recently stated that soil testing has been completed in the Verte-Homesteader community — located near the former Domtar wood treatment facility.

Workers drill core samples in a contaminated parcel of land at the old wood treatment plant site in Edmonton, June 28, 2018. (Photo Credit: Kaiser/Postmedia)

“The results show no issues in the surface soil of any of the homeowners’ properties, but there were four areas of unoccupied land in the southeast corner of the neighbourhood where chemicals were found above health guidelines and that area is now being fenced off,” spokesman Cam Traynor said in an email.

A map showed two tests in the soon-to-be-fenced area exceeded human health guidelines for dioxins and furans.

In the spring, about 140 homeowners near the site of the former wood treatment plant at 44 Street and Yellowhead Trail were warned soil and groundwater in the area was contaminated with a list of potentially cancer-causing substances.

Officials said no contaminants were known to be in residential areas.

From 1924 to 1987, the land was the site of a plant in which toxic chemicals were used to treat railroad ties, poles, posts and lumber. Parts of the property are now a housing development.

The site’s current owners and developers, 1510837 Alberta Ltd. and Cherokee Canada Inc., were ordered to build a fence around the contaminated land to reduce potential health risks earlier this year.  Cherokee Canada did not immediately respond to a request from the Edmonton Journal.

Alberta Environment and Parks also directed the companies, including former owner Domtar, to take environmental samples and create plans to remove contaminants and conduct human health risk assessments. The orders also affected a greenbelt southeast of the site currently owned by the City of Edmonton.

The recently completed testing covered the top one-third of a metre of soil. Traynor said deeper soil testing in the broader area is ongoing. That work, along with a human health risk assessment, is expected to be completed this fall.

Global Emergency Spill Response Market – Trends and Forecast

Analytical Research Cognizance recently issued a report on the Global Emergency Spill Response Market.  The report focuses on detailed segmentations of the market, combined with the qualitative and quantitative analysis of each and every aspect of the classification based on type, spill material, spill environment, vertical, and geography.

The report provides a very detailed analysis of the market based on type, the emergency spill response market has been classified into products and services.  The products include booms, skimmers, dispersants and dispersant products, in-situ burning products, sorbents, transfer products, radio communication products, and vacuum products.

The report has a services section that provides a forecast on the future growth of the services sector.  The services segment has been classified into product rental services, waste management services, manpower training services, transportation and disposal services, spill response drill and exercise services, tracking and surveillance services, risk assessments and analysis services, and other services.

Scope of the Report:

This report studies the Emergency Spill Response market status and outlook of global and major regions, from angles of players, countries, product types and end industries; this report analyzes the top players in global market, and splits the Emergency Spill Response market by product type and applications/end industries.

The market is expected to have significant growth in the coming years owing to stringent environmental regulations across the world to reduce the environmental pollution from spills.

Skimmers held the largest market size, in terms of product, primarily due to the increased demand for mechanical recovery methods for spill recovery.  Unlike other methods, the mechanical recovery methods remove the spill material from the spill environment.  Thus, skimmers are more effective in mitigating the environmental impact of the spills.

The global Emergency Spill Response market is valued at 2,530 million USD in 2017 and is expected to reach 3,410 million USD by the end of 2023, growing at a CAGR of 5.1% between 2017 and 2023.

The Asia-Pacific will occupy for more market share in following years, especially in China, fast growing India, and Southeast Asia regions.

North America, especially The United States, will still play an important role which cannot be ignored. Any changes from the United States might affect the development trend of Emergency Spill Response.

 

New Technology on Track to Vitalize Confined Space HazMat Training

by Steven Pike , Argon Electronics

Teams operating in confined spaces within hazardous industrial buildings or process facilities understand all too well the importance of adhering to strict health and safety regulations.

The hazards that confined spaces present can be physical or atmospheric in nature – from the risks of asphyxiation or entrapment to exposure to extremes of temperature or the release of toxic chemicals.

Confined Space Entry

According to the Census of Fatal Occupational Injuries, on average two people die in the US every day as the result of incidents that take place within confined spaces.

In many cases too, it is not just the victim who is at risk, but the rescuer or first responder who may be unaware of the hazard they are about to encounter.

Directives such as the Occupational Safety and Health Administration (OSHA), the Control of Major Accident Hazards Regulations (COMAH), the Dangerous Substances and Explosive Atmospheres Regulations (DSEAR), Atex and many others all have a pivotal role to play in ensuring safety.

But despite the emphasis on prevention, any potentially harmful chemical release, and specifically one that occurs within the context of a confined space, will require personnel who are skilled and confident to handle a variety of complex challenges.

With these challenges in mind, a new app-based multigas simulator technology, specifically designed for use in confined space settings, is scheduled for release in late summer 2018.

And the new system looks set to deliver an enhanced level of realism for industrial HazMat training scenarios.

Applying CWA Technology to Industrial HazMat Training

The use of simulation technology for chemical warfare agent (CWA) training is already well established, with intelligent, computer-based training aids such as Argon Electronics’ PlumeSIM and PlumeSIM-SMART systems currently in use by military forces around the world.

The launch of PlumeSIM in 2008 provided CWA and CBRN instructors with a simulation package that enabled them to use their laptops, in conjunction with a map or images, to plan a diverse range of field and table-top exercises.

The type of substance, whether a single or multiple source and an array of environmental conditions (such as wind direction and speed) could all be easily configured. And the innovative technology enabled whole exercises to be recorded for after action review (AAR) and future contingency planning.

In 2016 came the introduction of PlumeSIM-SMART – which offered similar capabilities to PlumeSIM but replaced the use of simulator devices in the field with the simplicity of a mobile phone.

The ability to transform a mobile phone into a look-alike gas detector was to prove especially practical (and budget-friendly) for high-hazard industrial organizations and municipal responders.

And using mobiles offered some additional and unexpected benefits in that it enabled field exercises to take place in any location.

Realistic Multigas Training

The newest addition to Argon’s simulation technology portfolio has been devised for specific use within the training environs of confined spaces and multi-level buildings.

The device will offer HazMat instructors the flexibility to simulate specific levels and concentrations of gases, whether these be in the form of a gas escape or a dangerous device (or devices) concealed within a building.

It will also be highly configurable to enable instructors to select the use of either single or multigas sensors within their training scenarios.

The hardware will be identical to that currently available for CWA training and toxic industrial response training. It has also been configured to interact with existing hand-held gas detection simulators, such as PlumeSIM-SMART, to provide an enhanced level of realism and a more focused training experience.

Simulation sources will be able to be set to emit a signal that replicates the conditions of a particular substance, a low level or oxygen or an explosive atmosphere.

And as students move around the training environment, their display readings will adjust accordingly to simulate an event such as a breached alarm.

The latest detector also promises to overcome the issues posed by communications interference within buildings where GPS technology can often be limited.

Working in confined spaces within industrial complexes can present a daunting array of hazards, both for the staff operating within the facilities and for the emergency teams charged with first response.

The continued development of simulator technology can help to address these challenges by providing realistic, hands-on training opportunities that replicate real-life conditions.

This article was originally published in the Argon Electronics website.

_______________________

About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a world leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators.

In use worldwide, Argon simulators have applications for training and preparedness within civil response, the military, EoD, unconventional terrorism / accidental release, and international treaty verification, with a growing presence in the nuclear energy generation and education markets. We have been granted a number of international patents in this field.

Nova Scotia Announces Plan to Assess Contaminated Site in Halifax

The Nova Scotia government recently announced that it is taking the first steps to determine what’s needed to remediate a former construction and demolition site in Harrietsfield, Halifax Regional Municipality.

Homemade signs line the road to Harrietsfield, N.S., on May 14, 2018.

Signs of the water contamination issue in Harrietsfield, Nova Scotia. (Alexa MacLean/Global News)

Nova Scotia Lands Inc. will commission a site assessment this summer to determine the extent of contamination, how long it will take to remediate and how much it will cost.  It will also determine the condition of the existing infrastructure and evaluate what potential impacts the remediation might have. The cost of the assessment is about $250,000.

“This site has been a problem for the community for far too long. We’re taking an important and necessary action to address it,” said Environment Minister Iain Rankin.

Two ministerial orders were issued in 2016, ordering the companies to assess the contamination that was impacting residents’ wells and submit a plan to remediate it. Those orders have not been followed.

Mr. Rankin has invoked his authority under the Environment Act to ensure those orders are carried out.

Under the act, the minister also has the authority to hold the former operators of the site responsible for the costs of remediation.

“We will pursue all available options,” said Mr. Rankin.

In 2016, the province had water treatment facilities installed at eight area homes where there was evidence that well water was being impacted by contamination at this facility.

A court case is ongoing against two companies that operated the former RDM Recycling site between 2002 and 2013. The site assessment will not impact the court case. The last court date was in late June.

RDM Recycling Plant, Harrietsfield, Nova Scotia (Photo Credit: CBC)

Hazmat University launches Hazardous Material Online Training

The U.S. Department of Transportation requires anyone whose job involves the performance of any task regulated by the U.S. Hazardous Materials Regulations to undergo hazardous materials shipping training. Likewise, all employers must provide their employees with relevant training applicable to their job function. Hazmat University offers online training programs that can be completed on your desktop, laptop, tablet, or smartphone 24/7.

“When transporting hazardous materials/dangerous goods in commerce, compliance is a primary concern. Compliance is achieved through well maintained training programs by the hazmat employer. Training is an essential component of any shipping operation to achieve safety in the transport of hazardous materials,” said Sonia Irusta, Vice President of Bureau of Dangerous Goods, LTD.

Hazmat University recognizes the need for anyone entrusted with the handling of dangerous goods to be trained on the dangerous goods regulations and to be able to perform their job functions when handling dangerous goods.

Hazmat University makes certain their training programs are exemplary and features are excellent and easy to access. Listed below are the four reasons Hazmat University is your one-stop-shop for hazardous material shipping training.

A Variety of Training Options

  • A wide range of classes that suit a variety of needs such as different modes of transportation including ground, air and sea.
  • Classes cover a wide range of regulations including: 49 CFR Hazardous Materials Regulations, the International Air Transport Association Dangerous Goods Regulations, and the International Maritime Dangerous Goods Code.

Regular Updates

  • Hazmat University updates based on “The Hazardous Materials Regulations” multiple times each year which keeps lesson plans and materials for online content up-to-date.
  • Anyone handling hazardous materials is required stay on top of any amendments and regulatory changes made.

Everything is Online

  • All courses are offered online to relieve the stresses of travel, parking and changing schedules.
  • Lessons can be accessed from anywhere at any time whether at home or in the office.

Start Immediately

  • Begin your training from the moment that you finish placing your order.
  • Your enrollment codes come with your order confirmation, so there is no delay in getting started.
  • Certificates are issued instantly upon completion.

Hazmat University provides specialized courses in the transportation of dangerous goods by air, ground, or vessel, and training for specialized needs, such as lithium batteries, general awareness, segregation, and others.

All Hazards Waste Management Planning (WMP) Tool

The U.S. EPA recommends that communities have a Waste Management Plan (WMP) that addresses the management of waste generated by all hazards, particularly from homeland security incidents ranging from natural disasters and animal disease outbreaks to chemical spills and nuclear incidents to terrorist attacks involving conventional, chemical, radiological, or biological agents.

This tool is intended to assist emergency managers and planners in the public and private sectors in creating or updating a comprehensive plan for managing waste generated from man-made and natural disasters. The tool walks the user through the process of developing and implementing a plan. The tool also contains many resources that can be used as aids to various aspects of the planning process. View and use at https://wasteplan.epa.gov.