VelocityEHS acquires Industrial Hygiene Software company Spiramid

VelocityEHS, a Chicago-based environment, health, safety (EHS) software company, recently announced it has acquired Spiramid, developer of the a system for managing industrial hygiene (IH). The acquisition adds Spiramid’s occupational safety & health software to the VelocityEHS’s EHS platform. The software, now called VelocityEHS Industrial Hygiene, gives organizations the capabilities to efficiently run an industrial hygiene program.

VelocityEHS is launching its new Industrial Hygiene solution at a time when IH is at an important crossroads. The need for workplace programs that anticipate and prevent workplace hazards is growing, while the number of certified industrial hygienists and investments in traditional programs has been on the decline.

“We’re excited to launch our powerful new Industrial Hygiene product. It’s a perfect fit for people working on the frontlines and has great synergy with our market-leading Chemical Management capabilities. Its simple design cuts through the complexity of IH tasks,” said Glenn Trout, president and CEO of VelocityEHS. “While there’s no substitute for a well-trained, well-resourced team of industrial hygienists, the reality today is that a growing number of EHS generalists are being called upon to do sampling and run IH programs that fall outside the scope of their training and traditional responsibilities. Whether you’re a veteran hygienist or new to the role, we believe our new IH solution will provide significant value.”

The software gives companies with sophisticated programs the ability to see, in one place and in real time, what’s happening across their enterprise. It gives staff hygienists new reporting tools — like dynamic risk matrices — to help them determine where and why to deploy resources, as well as to demonstrate the value of IH when talking with leadership stakeholders. For companies without a Certified Industrial Hygienist, it provides a framework for managing exposure risks and meeting a wide range of IH tasks.

“The goal of any industrial hygiene program is to help as many people in the workplace as you can. I am proud to see our IH software, which we have spent years perfecting, added to the VelocityEHS platform, which serves the industry’s largest EHS software community,” said Dave Risi, co-founder of Spiramid.

Managing IH can require the collaboration of many stakeholders, including people sampling in the field, IH consultants, outside laboratories, and program managers. VelocityEHS’ Industrial Hygiene software is a central management hub, facilitating the workflow and hand-off of responsibilities from party to party. For instance, users can more easily plan and control all aspects of IH, from selection of chemicals and analytical methods, to selection of laboratories and access of sampling results, with options to share information with the right stakeholders. The solution lets users send chain of custody forms directly to labs and receive the analytical data electronically, inside the product, eliminating the need for manual input and helping to avoid errors by making the information readily accessible.

Other features include an in-product database of CAS Registry Numbers, OELs and laboratories, plus easy tools for tracking and managing of similar exposure groups (SEGs), qualitative assessments, sampling plans, medical surveillance, surveys, samples and equipment. It is the smartest and most efficient way to track a high-volume of complicated sample data and to manage risk assessments and mitigation programs.

The new IH software, together with VelocityEHS’ Chemical Management and Industrial Ergonomics solutions, provides industrial hygienists with the comprehensive resources they need to promote healthier workplaces.

Demystifying Occupational Hygiene

Written by Abimbola Badejo, Staff Writer

At the recent Partners in Prevention 2019 Health and Safety Conference, Ontario, Canada; organized by Workplace Safety and Prevention Services (WSPS) Ontario, Canada, Dave Gardner of Pinchin Ltd. delivered a presentation on Demystifying Occupational Hygiene. Mr. Gardner is Senior Occupational Hygiene and Safety Consultant with Pinchin Ltd. Below is a summary of his presentation.

WHAT IS OCCUPATIONAL HYGIENE?

Occupational hygiene has been defined by the United States Department of Labour Occupational Safety and Health Administration as “that science and art devoted to the anticipation, recognition, evaluation, and control of those environmental factors or stresses arising in or from the workplace, which may cause sickness, impaired health and well-being, or significant discomfort among workers or among the citizens of the community.1.   Simply put, the goal of Occupational hygiene is to ensure the safety and protection of a worker at his or her workplace, provided the worker follows a set of guidelines  that have been put in place to safeguard his/her health and safety.  

Typical occupational hygiene principles include written standards, procedures and practices; workers training as part of a knowledge management program; logical thinking on the part of the creator; a combination of actions with words learned from the written standards; and total compliance with associated regulations.

WHY IS OCCUPATIONAL HYGIENE PROGRAM IMPORTANT?

An Occupational Hygiene program is of great importance as its negligence leads to occupational injuries and diseases. Occupational diseases are considered more significant due to factors associated with it; which include

  • Diseases caused by exposure to either chemical, physical or biological agents at the workplace
  • Sources such as exposure to airborne asbestos particles, confined spaces, noise, construction projects, etc.
  • Categories namely Long Latency Illness, Noise Induced Hearing Loss (NIHL), Chronic Exposure and effects and Acute Exposure and effects
  • Observable effects which are not seen until after a long duration of exposure
  •  75% of fatalities in diseases, attributed to occupational origins

The Ontario Workplace Safety and Insurance Board (WSIB) reported that approximately 130 thousand claims were filed, and about $940 million benefit costs were released, between 2008 and 2017. Occupational diseases with long latency are mostly serious and these account for only three percent of the occupational diseases with benefits.

Based on these factors (and those not mentioned), reviews have been made by the Human Resources and Skills Development Canada (HRSDC) and Labour Canada. These reviews include updates made to the Occupational Exposure Limits (OEL) of chemicals, training workers on the safe usage of materials and the equipment at the workplace, thorough knowledge of the materials and substances used at the workplace, compulsory and proper use of Personal Protective Equipment (PPE), alertness of workers to the state of their own health and compulsory medical check-ups in relation to workplace risk assessment.

CASE FOCUS: SUMMARY OF RISKS AND SURVEYS REPORTED FOR WORKERS IN THE CONSTRUCTION INDUSTRY

A survey made by the Center for Construction Research and Training regarding occupational diseases in the construction industry reported that the workers in this industry are:

  • twice as likely to have chronic obstructive lung diseases, five times more likely to have lung cancer, thirty-three times more likely to have asbestosis
  • inclined to suffer a 50% increase in Lung Cancer related deaths
  • predisposed to noise induced hearing loss (NIHL) (50% of workers)
  • susceptible to elevated levels of lead in their blood (17% of workers)
  • exposed to the allowable 8-hour exposure limit for Manganese during welding processes. This was observed with workers involved in boiler making (75%), iron-working (15%) and pipe-fitting (7%)).

In addition, a nationwide report has disclosed that 40% of WSIB costs are for construction occupational diseases, more construction workers die from a combination of occupational diseases and traumatic injuries and that 2 to 6 construction workers are more likely to develop occupational lung disease and NIHL.

As observed, most of the occupationally related diseases can be prevented by simple tasks such as hand-washing, proper use of PPE and correct compliance to defined regulations.

LEGISLATIONS GOVERNING OCCUPATIONAL HYGIENE

To ensure the protection of workers in various Canadian industries, regulations and guidelines have been put in place; some of which require compliance by either the employee or the employer. The legislations and related codes/standards guiding occupational hygiene in workplaces include:

Some of the provided regulations and guidelines are specific while others are general in application. The key to correct interpretation is to apply the correct regulation to the right workplace situation.

An example of a proper legislation application: Silica is an inert substance and an irreplaceable material in most products and buildings in the world today.  As the second most abundant mineral on the planet, silica is used in numerous ways. Getting the substance to the usable state requires processing, which exposes the worker to the respirable crystalline form. The regulation (O. Reg 490/09), listing silica as a designated substance, does not apply to the silica infused products but to the respirable fractions which the processing worker is exposed to. The regulation specifies an occupational exposure limit (OEL) for respirable crystalline silica as 0.05 mg/m3 of air (cristobalite silica) and 0.1 mg/m3 of air (quartz and tripoli silica) for an 8-hour/day or 40-hour weekly exposure. This regulation, however, does not apply to the employer or some other workers on a construction  project; but the employer’s responsibility will be to protect the worker’s health in compliance to section 25 (2)(h) of the OHSA, requiring employers to take every reasonable precaution in the circumstances to protect a worker.

FUNDAMENTALS OF OCCUPATIONAL HYGIENE

Before initiating an occupational hygiene program, a clearer understanding of basic terms is ideal.

Industrial Hygiene: this is an exercise devoted to the anticipation, recognition, evaluation, and control of those environmental stresses arising from the workplace, which may cause the impairment of a worker’s health.

Toxicology: the study of how chemical, physical and biological agents adversely affect biological systems. The adverse effects include irritation, sensitization, organ failure, diseases or cancer.

Disease, dose and exposure: Disease / response is caused by an agent dosage. Dosage is measured in relation to the exposure of the worker to an agent. Mathematically, exposure is calculated as the agent concentration multiplied by duration of exposure (concentration x time). Therefore, sampling surveys are simply estimating the exposure of the worker to a specific concentration of the agent. Exposure routes may be through inhalation, ingestion, contact or skin absorption.

Threshold Limit Values (TLV): TLVs are general concentration limit values for specific chemicals, to which a healthy adult worker can be exposed.  However, TLVs does not adequately protect all workers as their susceptibility levels to various chemicals are unique to them. TLVs are used by regulators as guidelines or recommendations to assist in the control of potential workplace hazards.

Time-Weighted Average (TLV-TWA): TWA concentration for a conventional 8-hour/day or 40-hour/week , to which a worker may be repeatedly exposed.

Short-Term Exposure Limit (TLV-STEL): This is a 15-minute TWA exposure that should not be exceeded.

Ceiling (TLV-C): This is a concentration that must not be exceeded during any part of working exposure

Air Monitoring: This is a process of sampling the air in the workplace, on a regular basis. The monitoring  may be qualitative (risk assessments, hygiene walkthroughs and training) or quantitative (air, noise and wipe sampling) in perspective.

RISK ASSESSMENT

The first focus of an occupational hygiene program is to conduct a risk assessment of the workplace processes.  A risk assessment shows that 20% of the activities or tasks  carried out, leads to 80% of  risks. Carrying out a risk assessment, focuses on the adverse effects of  a hazardous agent and the associated level of risk if a worker is exposed to it. Approaches to risk assessment include Critical Tasks Analysis (where stepwise task and risk inventories are made with the focus on worker’s safety), Process Safety (where the focus is on the process, controlling the risk to keep the worker safe) or a combination of both approaches. Risk assessment, therefore, is done  as thus:

  1. Making a list of the agents the worker is exposed to,
  2. Identifying the routes of entry,
  3. Identifying a relative risk level (low, medium or high),
  4. Documenting the control in place and its effectiveness.

Table 1. Requirements of a Hazard Reviewer. Scores are used to dictate the skill level required to assess and develop control strategies.

Risk
Score
Risk
Level
Minimum Requirements
<10 Low to Medium low Any trained employee
>10 to <20 Medium Health and Safety Department or a contracted Health and Safety Consultant
20 & above High Certified Health and Safety Professional or Industrial Hygienist (CRSP, CSP, CIH, ROH)

DEVELOPING AIR SAMPLING STRATEGIES

A preliminary survey is initially conducted using simple and common tools such as human senses (sight, taste, hear, smell, taste and gut-feelings), video camera, photo camera, tape measure and a notebook. Optional tools include velometer and smoke tubes.

Next, all knowledge and processes related to the hazardous agents are sought out using the central dogma of risk assessment (Recognition, Evaluation and Control).

The sampling itself should be done using standardized and validated methods (NIOSH, EPA, ASTM, etc.).

The extent of sampling should be determined, whether personal (breathing zone) samples or area samples.

Next, the duration of sampling should be determined, which could be  a whole day, full-shift, partial shift, single samples, sequential samples, grab or composite samples.

The worker to be sampled should be with the worker with the  highest exposure potential or a group of workers with similar exposure due to the similarity of their tasks at the workplace.

The amount of samples taken should also be determined.

The time of sampling should be determined (day or night shift, winter or summer season, etc.)

Documentation should be made at every sampling point; and this should include start and stop times, environmental conditions, chronological log of work tasks, quantified conditions during production, duration of shifts and break periods, use of PPE, engineering controls, housekeeping habits and the state of workplace ventilation.

PROGRAM DEVELOPMENT

Occupational hygiene programs are made with several guidelines governing it. According to the province of Ontario, all control programs must provide engineering controls, work practices and hygiene facilities  to control a workers exposure to a designated substance; methods and procedure should be put in place to monitor airborne concentrations of designated substances and measure workers exposure to the same; training programs should be organized for supervisors and workers on the health effects of the designated substance and the respective controls required. A typical Occupational Hygiene program, therefore, should  include the following:

  • Version history
  • Purpose / objectives
  • Scope and application
  • Distribution
  • Definitions and abbreviations
  • Roles, responsibilities and accountabilities
  • Program management (Resources, commitment and program coordinator)
  • Risk assessments
  • Exposure monitoring plans
  • Occupational hygiene surveys (sampling strategy development, analytical services, documentation and reporting )
  • Occupational hygiene controls
  • Training
  • Related document / appendices
  • Quality assurance
  • Maintenance of standard operating practices (SOPs)
  • Annual summary report.

CONCLUSION

An occupational hygiene program is an important component of workplace management. This ensures the protection of workers’ health, which leads to better and greater productivity at the workplace.  The foundation of occupational hygiene programs is to understand the principles that govern the program and knowing how to apply the principles to various situations at the workplace. Proper application and effective controls will assist in achieving the goal of establishing a safe environment for workers to operate.

REFERENCES

  1. https://www.osha.gov/dte/library/industrial_hygiene/industrial_hygiene.pdf

Meat Packing Plant facing major fines for exposing workers to hazardous chemicals

The U.S. Department of Labor’s Occupational Safety and Health Administration (U.S. OSHA) has cited 7 S Packing LLC – operating as Texas Packing Company in San Angelo, Texas – for exposing workers to releases of hazardous chemicals. The company faces $615,640 in penalties.

The U.S. OSHA determined that the meat-packing facility failed to implement a required Process Safety Management (PSM) program for operating an ammonia refrigeration unit containing over 10,000 pounds of anhydrous ammonia. The employer also failed to provide fall protection, guard machines and equipment, control hazardous energy, and implement a respiratory protection program.

The PSM Covered Chemical Facilities National Emphasis Program focuses on reducing or eliminating workplace hazards at chemical facilities to protect workers from catastrophic releases of highly hazardous chemicals. PSM standards emphasize the management of hazards associated with highly hazardous chemicals, and establishes a comprehensive management program that integrates technologies, procedures, and management practices to prevent an unexpected release.

The company has 15 business days from receipt of the citations and penalties to comply, request an informal conference with OSHA’s area director, or contest the findings before the independent Occupational Safety and Health Review Commission.

Under the Occupational Safety and Health Act of 1970, employers are responsible for providing safe and healthful workplaces for their employees. OSHA’s role is to help ensure these conditions for America’s working men and women by setting and enforcing standards, and providing training, education and assistance.

Global Crisis, Emergency and Incident Management Platforms Market 2019

Persistence Market Research recent market report on Global Crisis, Emergency and Incident Management Platforms estimates that it will be worth $102 billion (USD) by the end of 2024.

A 2017 market analysis by Persistence Market Research on the market in North America predicted the year-over-year growth the Global Crisis, Emergency and Incident Management Platforms to increase at a CAGR of 7.2%. through to 2023. The 2017 report estimated that the North America market accounted for a relatively high market share and be valued at more than US$ 20 Billion in 2017. The report estimated that the North American regional market would continue to remain dominant in terms of value during the forecast period (2017 – 2024).

The latest market report from Persistence Market Research predicts that the global market or crisis, emergency & incident management platforms will be fragmented across various systems and platforms. Among which, the demand for web-based emergency management software, geospatial technology, emergency notification system, hazmat technology, seismic warning systems, and remote weather monitoring systems is expected to gain traction throughout the forecast period. These systems are also predicted to be demanding greater incorporation of communication technologies. Through 2024, satellite phone, vehicle-ready gateways, and emergency response radars will be the most dominant type of communication technologies used in working of any crisis, emergency & incident management platform.

Likewise, the report also expects that during the stipulated forecast period, professional services such as consulting and emergency operation center (EOC) design & integration will be in great demand. By the end of 2024, crisis, emergency & incident management platforms will be actively adopted across industry verticals such as BFSI, energy & utility, government & defense, and telecommunication and IT.

A regional analysis of the global crisis, emergency & incident management platform market indicates that North America will dominate by accounting for over US$ 36 Billion revenues by 2024-end. Adoption for such platforms will also be high in Asia-Pacific, and the region is expected to showcase a 6% value CAGR.

Leading providers of crisis, emergency & incident management platforms in the world include Honeywell International, Inc., Lockheed Martin Corporation, Motorola Solution, Inc., Rockwell Collins, Inc., Siemens AG, Iridium Communication Inc., Guardly, Environmental System Research Institute, Inc., and Intergraph Corporation.

Get Rid of Outdated Hazmat Compliance Materials

Written by Hazmat University

Spring is in the air! And along with that comes the pleasant and incessant urge to clean closets, declutter the house, and scrub the whole thing down!  Something that we may overlook, however, is that Spring is also a perfect time to do a Hazardous Materials refresh – and it doesn’t involve washing walls!  

Spring Clean and Keep Current Hazmat Compliance Materials

Spring is also an ideal time to do a Hazardous Materials refresh. Many people avoid this kind of clean-up because they don’t know what they should keep and for how long. But hazmat compliance is dependent on maintaining current knowledge and current practices. Now really is an excellent time to make sure that your hazardous materials are current, relevant, and not overly burdensome for the people that need them to properly do their jobs.

Out With The Old, Hold On to the Current

Do you have a tendency to hold on to outdated materials, forms, or labels? If you are, stop immediately. Hazmat compliance materials are detail-oriented to begin with, so the simpler, clearer and less cluttered, the better. You’ll be happy you did it. Outdated materials present the danger of actually being used by someone and causing an issue. Good riddance, old subsidiary risk labels!

Which Important Documents Should You Keep?

As regulations for shipping dangerous goods increase in complexity, there’s no reason to keep information laying around that could increase your risk for non-compliance, including stopped shipments, supply chain delays, fines and more.

The industry makes sweeping changes all the time, making it all the more important to only have up-to-date regulations on hand. If your printed copies of 49 CFR, IATA DGR, or the IMDG Code are outdated, it may be time to move on to online resources. An example of an online resource is Title 49 CFR   “e-CFR” which is available online, and the Government Publishing Office maintains it so that it is always up-to-date.

Compliance is dependent on maintaining current knowledge and current practices, and this is a perfect time to ensure that your hazardous materials

  • regulations;
  • policies;
  • practices;
  • employee training;
  • training content;
  • training records;
  • packaging closure instructions;
  • internal audits;
  • emergency response provider product information;
  • and more

are current, relevant, and not overly burdensome for the people that rely on them to properly do their job. Hazardous materials transportation compliance is detail-saturated to begin with, so the simpler you can make it, the better – and you’ll be happy that you did.

Making sure you discard old training and compliance documents is crucial, especially if you have new or inexperienced hazmat employees. Remembering all the regulations for various shipping transportation processes can be difficult. That’s part of the reason why it’s crucial to stay up-to-date on regulations.

It’s also critical that hazmat employees have access to transportation regulations at all times in case they need to refer to them. Remembering the most essential aspects of hazmat compliance becomes second nature for most employees, but that happens over time.

Stay Up-to-Date with Hazmat University

Everyone involved in the transportation of hazardous materials in commerce is required by law to be aware and comply with the appropriate regulations. Hazmat University offers several training programs for shipping and handling hazmat by air, ground, and sea. Courses include initial training for novices, recurrent training for those with more experience.

Now we can take a breath of that fresh spring air, and just maybe we have inspired you to clean out those closets too! Happy Spring from the Bureau of Dangerous Goods!

What is the Cost of An Asbestos Test?

Written by Robert B. Greene, PE, PG, CIH, LEED AP, GLE Associates Inc.

The presence of asbestos can be hazardous to workers and building occupants during renovations and even in the course of daily business, and the only way to know if it is a problem is to test for it.

What Is Asbestos and Why Is It a Problem?

Asbestos is a heat-resistant silicate fiber that is frequently present in building materials. Contrary to common understanding, it is still used in building materials today and can be present in any building of any age.

It becomes a problem when asbestos-containing materials are disturbed and the fibers enter the air. The fibers lodge themselves in the lungs of anyone who breathes them in and can cause mesothelioma, lung cancer, and other acute and long-term health problems, up to and including death.

How and When Should You Test for Asbestos?

An asbestos test (also called an asbestos survey) should be conducted prior to any renovation or demolition activities in any building of any age. In fact, an asbestos survey is required by law prior to these activities for any building materials which may be disturbed.

You should also be concerned about the ongoing presence of asbestos in older buildings, where asbestos-containing materials may have deteriorated over time. This can cause them to release asbestos fibers into the air, creating a hazard for building occupants. An asbestos survey is a relatively inexpensive way to ensure your buildings are safe for tenants and employees.

How Does an Asbestos Test Work?

A qualified asbestos company will bring in an experienced team to collect samples of potential asbestos-containing building materials. The samples will be sent to a lab for testing, and a report will be generated based on the results.

How Much Does an Asbestos Test Cost?

An asbestos survey is a relatively inexpensive precaution and may be mandated by law prior to even small renovation projects. The cost to conduct asbestos testing will vary widely based on a number of factors, including:

  • The type of facility. The more complex the building, the more time it will take to collect an adequate number of samples from all the relevant types of materials. It will also cost more to have more samples tested in the lab. For example, an asbestos survey of a hospital would be much more expensive than the same size open warehouse.
  • Type of survey. For example, a survey for a renovation of a small portion of the building, affecting a limited number of building materials, will generally cost substantially less than a building demolition survey which will affect all of the building’s components and materials.
  • Square footage. A larger facility will likewise require more time and a larger number of samples, all else being equal.
  • Facility use. If the facility is currently in use, the cost of testing will increase to account for accommodations and protections necessary for the safety and comfort of your occupants. In some cases, such as hospitals, extra care will be required to minimize disruption and ensure safety, which can further increase the cost.
  • Accessibility. If asbestos surveyors have to crawl into tight spaces, remove walls or ceiling materials, climb to high spaces, or use ladders and scaffolding to reach potential asbestos-containing materials, those factors will increase the cost of testing.

It’s hard to know exactly what your cost for an asbestos survey will be without a qualified quotation.


About the Author

Robert B. Greene, PE, PG, CIH, LEED AP has served in the engineering, environmental consulting, construction and remediation arenas for more than 36 years, including president of GLE since 1989. He has managed numerous consulting and contracting projects for public and private sector clients throughout the United States with construction and environmental remediation costs exceeding $100 million.

In 1987, the governor appointed Mr. Greene to the Florida Asbestos Committee, which was responsible for developing state asbestos regulations. He has also served as an expert witness for litigation for environmental and construction related issues.

United States: U.S. EPA Takes Action Under TSCA Identifying Chemicals For Agency Scrutiny

Written by by Lawrence E. Culleen, Arnold & Porter

Prioritization of Chemicals

In its continuing quest to meet regulatory deadlines imposed by the 2016 amendments to the Toxic Substances Control Act (TSCA), the United States Environmental Protection Agency (U.S. EPA) has published a list of 40 chemicals that must be “prioritized” by the end of 2019. The announcement marks the beginning of the Agency’s process for designating the 40 listed chemicals identified as either “high” or “low” priority substances for further the U.S. EPA scrutiny. At the conclusion of the prioritization process, at least 20 of the substances likely will be designated as high priority.

A high priority designation immediately commences the U.S. EPA’s formal “risk evaluation” procedures under the amended statute. The risk evaluation process can lead to “pause preemption” under the terms of the 2016 amendments and new state laws and regulations restricting the manufacture, processing, distribution, and use of a chemical substance undergoing a risk evaluation could not be established until the evaluation process is completed. The U.S. EPA commenced its first 10 risk evaluations as required under the amended law at the close of 2016. The Agency is required to have an additional 20 risk evaluations of high priority substances ongoing by December 22, 2019. If the U.S. EPA’s risk evaluation process concludes that a substance presents an “unreasonable risk” to health or the environment under its “conditions of use,” the Agency must commence a rulemaking to prohibit or limit the use of the substance under Section 6 of TSCA.

The Agency’s announcement of the list of chemicals to undergo prioritization provides the makers and users of the listed substances an important, time limited opportunity to submit relevant information such as the uses, hazards, and exposure for these chemicals. The U.S. EPA has opened a docket for each of the 40 chemicals and the opportunity to submit information for the U.S. EPA’s consideration will close in 90 days (on June 19, 2019). The U.S. EPA will then move to propose the designation of these chemical substances as either high priority or low priority. The statute requires the U.S. EPA to complete the prioritization process, by finalizing its high priority and low priority designations, within the next nine to 12 months.

The list of 20 substances to be reviewed as high priority candidates consists entirely of substances previously identified by U.S. EPA in 2014 as “Work Plan” chemicals. Thus, the list contains few chemicals that should be considered complete “surprises.” However, the inclusion of formaldehyde may raise concerns in certain quarters given the scrutiny that has been given to the U.S. EPA’s previous struggles with assessing the potential effects of formaldehyde. The Agency has attempted to address these concerns by stating “Moving forward evaluating formaldehyde under the TSCA program does not mean that the formaldehyde work done under IRIS will be lost. In fact, the work done for IRIS will inform the TSCA process. By using our TSCA authority EPA will be able to take regulatory steps; IRIS does not have this authority.” Also included in the listing are several chlorinated solvents, phthalates, flame retardants, a fragrance additive, and a polymer pre-curser:

  • p-Dichlorobenzene
  • 1,2-Dichloroethane
  • trans-1,2- Dichloroethylene
  • o-Dichlorobenzene
  • 1,1,2-Trichloroethane
  • 1,2-Dichloropropane
  • 1,1-Dichloroethane
  • Dibutyl phthalate (DBP) (1,2-Benzene- dicarboxylic acid, 1,2- dibutyl ester)
  • Butyl benzyl phthalate (BBP) – 1,2-Benzene- dicarboxylic acid, 1- butyl 2(phenylmethyl) ester
  • Di-ethylhexyl phthalate (DEHP) – (1,2-Benzene- dicarboxylic acid, 1,2- bis(2-ethylhexyl) ester)
  • Di-isobutyl phthalate (DIBP) – (1,2-Benzene- dicarboxylic acid, 1,2- bis-(2methylpropyl) ester)
  • Dicyclohexyl phthalate
  • 4,4′-(1-Methylethylidene)bis[2, 6-dibromophenol] (TBBPA)
  • Tris(2-chloroethyl) phosphate (TCEP)
  • Phosphoric acid, triphenyl ester (TPP)
  • Ethylene dibromide
  • 1,3-Butadiene
  • 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta [g]-2-benzopyran (HHCB)
  • Formaldehyde
  • Phthalic anhydride

The U.S. EPA has signaled that it has received a manufacturer request for a EPA to undertake a risk evaluation of two additional phthalates which, if administrative requirements for such request have been met, the Agency would announce publicly in the very near term.

The 20 low priority candidate chemicals were selected from the U.S. EPA’s “Safer Chemicals Ingredients List”—a list of substances previously evaluated and considered to meet the U.S. EPA’s “Safer Choice” criteria for use in certain common product categories, such as cleaning products.

Other Recent and Impending U.S. EPA Actions Under TSCA

Given the numerous deadlines that are looming under the amendments to TSCA, it is critical that chemical manufacturers and processors of chemicals and formulations remain aware of the recent and upcoming actions under TSCA that can significantly impact their businesses. The following provides a short list of important actions of which to be aware.

Active/Inactive TSCA Inventory Designations. EPA released an updated version of the TSCA Inventory in February 2019. The Inventory is available for download here. This version of the Inventory includes chemical substances reported by manufacturers and processors by their respective reporting deadlines in 2018. The updated TSCA Inventory (confidential and non-confidential versions) includes 40,655 “active” chemical substances and 45,573 “inactive” chemical substances. Once the current 90-day “transition period” has concluded, it will be unlawful to manufacture, import or process in the US any substance that is listed as “inactive” without first providing notice to the U.S. EPA. Thus, prior to the expiration of the “transition period” on May 20, 2019, manufacturers and processors of chemical substances that are not listed as active on the February 2019 TSCA Inventory must take steps to activate the substance by filing a Notice of Activity (NOA Form B) for any chemical substance that they currently are manufacturing or processing, or anticipate manufacturing or processing within 90 days of submission.

Final TSCA Section 6(a) for Methylene Chloride in Paint and Coating Removers. EPA has released its long-awaited TSCA Section 6(a) rule restricting the use of methylene chloride in paint and coating removers. The final rule prohibits the manufacture, processing, and distribution of methylene chloride in paint removers for consumer use. The rule prohibits the sale of methylene chloride-containing paint and coating removers at retail establishments with any consumer sales (including e-commerce sales). The U.S. EPA declined to finalize its determination that the commercial use of methylene chloride-containing paint and coating removers presents an unreasonable risk. Therefore, distributors to commercial users, industrial users, and other businesses will continue to be permitted to distribute methylene chloride-containing paint and coating removers. However, given recent efforts by store-front retailers to “deselect” such products for consumer sales, it remains unclear how distributions to commercial users can or will occur.

The U.S. EPA simultaneously released an advanced notice of proposed rulemaking related to a potential certification program for commercial uses of methylene chloride-containing paint and coating removers. The U.S. EPA has similar programs in place for certain pesticides and refrigerants, and the United Kingdom currently has in place a program to certify commercial users of methylene chloride-containing paint and coating removers. The U.S. EPA is seeking comment on whether a certification program is the appropriate tool to address any potential risks that could be posed by the commercial use of methylene chloride-containing paint and coating removers.

Upcoming Draft Risk Evaluations. The U.S. EPA is expected to publish within days or weeks the highly anticipated draft Risk Evaluations for the remaining 9 of the 10 initial substances to undergo TSCA Risk Evaluations under the amended law and which have been under review since December 2016. The Agency will accept comments on the drafts for a limited period.

Proposed Rules for 5 PBT substances. The U.S. EPA is required to issue no later than June 2019 proposed TSCA Section 6 regulations for 5 persistent, bioaccumulative and toxic (PBT) substances that were identified during 2016 as priorities for regulatory action. The Agency must propose expedited rules intended to reduce exposures to the extent practicable.


*Camille Heyboer also contributed to this Advisory.

The content of this article is intended to provide a general guide to the subject matter. Specialist advice should be sought about your specific circumstances.

About the Author

Lawrence Culleen represents clients on administrative, regulatory, and enforcement matters involving federal agencies such as the U.S. Environmental Protection Agency (EPA), the US Department of Agriculture, the US Food and Drug Administration, and the Consumer Product Safety Commission. Mr. Culleen has broad experience advising clients on US and international regulatory programs that govern commercial and consumer use chemicals, pesticides and antimicrobials, as well as the products of biotechnology and nanoscale materials. Prior to joining the firm, Mr. Culleen held significant positions at EPA serving as a manager in various risk-management programs which oversee pesticides, chemical substances, and biotechnology products.

Tesla Fire Is A Reminder For Businesses Storing Hazardous Materials

Written by Dawn DeVroom, IDR Environmental Services

fire broke out on Saturday, February 17 at Tesla’s car plant in Fremont, California. This isn’t anything new, because we do hear about businesses that have fires from time to time.

But, what makes this fire different is that it happened in an area where the company stores some of its hazardous materials outside. And, because of this, Tesla was forced to call the local Fremont Fire Department and required a hazardous materials unit.

According to reports, Tesla has a history of fires at this facility. This includes a fire in their paint shop in April 2018 and another outdoor fire in August 2018.

Add to this, Tesla was already under investigation by Cal-OSHA cited in January and fined $29,000 for allegedly violating six different worker safety regulations in their general assembly 4 (GA4) production line.

According to the Silicon Valley Business Journal:

“Tesla allegedly didn’t obtain a building permit or inspect the tent for safety violations, train workers on how to get out of the building in an emergency, or protect themselves from heat illness. Cal-OSHA also claims the tent had exposed metal rods and rebar that workers could potentially impale themselves on, and failed to cover a hole in the floor that was 22 inches wide, 14 inches wide and 8 inches deep.”

Suffice it to say…this fire isn’t helping Tesla’s safety record with OSHA.

So, what can businesses who store hazardous materials do to avoid Tesla’s potential catastrophe with that fire. Here are some very important things you should do.

Store Hazardous Waste In Proper Containers

storing hazardous materials

As a hazardous waste generator, you must satisfy safety, environmental and regulatory guidelines and have a solid base of knowledge and experience in using and handling hazardous materials in your facility.

Using the right storage containers for different types of hazardous waste is the key to safety and compliance. All hazardous waste generators must insure that their containers are built to specification according to the most current codes and regulations.

Following is a list of the different types of hazardous waste storage containers according to the Environmental Protection Agency website.   

  • Containers – portable device in which hazardous waste is stored, transported, or otherwise handled.
  • Tanks – stationary device of man-made materials used to store hazardous waste, either open or closed.
  • Drip Pads – wood drying structure used by the pressure treated wood industry to collect excess wood preservative and drippings.
  • Containment Buildings – completely enclosed self-supporting structures used to store or treat non-containerized hazardous waste.
  • Waste Piles – open, uncovered pile used for treating or storing hazardous waste.
  • Surface Impoundments – a natural topographical depression, man-made excavation or diked area such as a holding pond, storage pit or settling lagoon.

Proper storage and disposal requires you to understand which materials are toxic, what they do, the types of containers needed for storing the material and the type of personal protective equipment (PPE) that must be used.

You can learn more about which container is right for you waste by reading our article, How To Choose The Right Hazardous Waste Storage Container.

Label Hazardous Waste Correctly

Identification of properties and the regulatory status of waste that you generate is vital in maintaining compliance with state and federal regulations.

Hazardous waste generators that accumulate hazardous waste on-site in containers must be aware of the Resource Conservation and Recovery Act (RCRA) regulations regarding the proper labeling, marking and placarding requirements for hazardous waste containers.

The California Department of Toxic Substances Control (DTSC) provides the following guidance for the proper labeling requirements for California hazardous waste generators as outlined in Title 22, California Code of Regulations (Cal. Code Regs.):

  • Date – The date upon which each period of accumulation begins must be clearly marked and visible for inspection on each accumulation unit.
  • Hazardous Waste Notice – Each generator tank or container must be labeled or clearly marked with the words, “Hazardous Waste”.
  • Name and Address – Name and address of the generator.
  • Composition and State – Chemical composition (chemicals in the waste) and physical state of the waste (e.g. solid, liquid, etc.)
  • Properties of Waste – Statement or statements that call attention to the particular hazardous properties of the waste (e.g. flammable, reactive, etc.)
  • Accumulation Dates – If waste is collected or consolidated in containers or tanks, the initial date of the accumulation must be marked, as well as the “90-day or 180-day period” dates, whichever applies to your company. If waste from an older container is added, the initial accumulation date will need to be changed.
  • Recurring Waste Labels – “Recurring use” labels may be used on containers where same waste streams are initially collected and emptied into larger accumulation containers. The labels can revise the initial accumulation and “90-day period” dates (without having to change the other labeling information). If the container is emptied at least once each day, the word “daily” may be used in the date area of the label. 

You can learn more in our article, How To Properly Label Hazardous Waste Containers.

Prepare a Hazardous Waste Contingency Plan

According to federal and state regulations, every hazardous waste generator is required to have an emergency contingency plan. This plan outlines the company’s program to minimize hazards to human health and the environment from fires, explosions or an unplanned sudden release of a hazardous waste.

Failure to implement a plan can lead to hefty fines with the California Department of Toxic Substances Control (DTSC) and the Environmental Protection Agency (EPA)

Your Hazardous Waste Contingency Plan should include:

Small Quantity Generators (SQG’s)

  • Designate an emergency coordinator and post contact information
  • Post the location of emergency equipment
  • Post emergency telephones
  • Ensure employees are familiar with emergency procedures

Contingency Plan Requirements for Large Quantity Generators (LQG’s)

  • Create a written plan on-site and make sure the it is up-to-date and reviewed frequently
  • Designate an emergency coordinator(s) and post contact information
  • Post the location of emergency equipment
  • Post emergency telephones
  • Create an emergency evacuation plan
  • Ensure employees are familiar with emergency procedures
  • List name, address and phone number (s) (home and office) for designated emergency coordinator
  • Submit written plan to local authorities

You must maintain at least one copy of the contingency plan at the facility, but multiple copies is even better. In addition, copies must be submitted to local police departments, fire departments, hospitals, and state and local emergency response teams that may provide emergency services to the facility.

Even if a facility will be providing its own responders, the contingency plan should still be sent to appropriate authorities in the local community in case of an off-site release or major emergency that requires their assistance.

You can read more about how not having a hazardous waste contingency plan affected another company in our article, No Hazardous Waste Contingency Plan Leads To Big Fine For Manufacturer.

Consider a HazMat Emergency Response Team

storing hazardous materials

The risks of working with hazardous substances and generating hazardous waste are great, and the consequences of a release, fire or spill can be dire.

Many companies choose to outsource their emergency response as an alternative to training, equipping and maintaining an emergency response team in-house. And, some companies will have more than one company at their disposal to ensure availability when an event occurs.

Emergency response companies have a fully-staffed, fully-trained hazmat emergency response team that are available 24 hours a day, 365 days per year.

It is important to establish a relationship in advance to allow for fast response times, with experienced supervisors who coordinate with all responsible agencies (such as local fire and rescue) to limit liability and costs.

Whether you need to control a situation or stop a potentially dangerous one, having an outside HazMat emergency response team provides the following benefits:

  • Save Lives
  • Protect Property
  • Preserve the environment
  • Limit Liability

You can learn more about using a HazMat emergency response team in our article, What A HazMat Emergency Response Team Can Do For Your Business.

Final Thoughts

Tesla serves as an example of what could happen to companies that use, generate and require storage of hazardous materials. Although nothing serious happened in Tesla’s recent fire, it could be much worse for your company if you don’t have the above procedures in place.

If you need assistance with putting together your program, contact a hazardous materials company that specializes in helping companies create and maintain their program.


About the Author

Dawn DeVroom is the CFO at IDR Environmental Services based in California. The company specializes in hazardous waste disposal.

Hazardous industry leaders give insight on the keys to operational excellence

A global survey of hazardous industries and Operational Index was recently published by Sphera. The annual Operational Excellence Index (OEI) survey report which highlights trends in digital transformation and OE strategies across the hazardous industries.

Previously conducted by Petrotechnics, now a Sphera company, the index is in its third year of surveying oil and gas, chemical, energy and industry manufacturing professionals to gauge attitudes around OE and the measures taken towards its adoption. Year after year respondents agree, OE programs help reduce risk, cut costs, and improve productivity. The 2018/2019 survey reveals senior leaders are relying on technologies to support their OE initiatives and identifies where they are coming up short and what they could do to improve.

Ninety percent of respondents agree digital transformation will accelerate their ability to achieve OE – not just as a one-off target but as an ongoing business objective. This is a significant increase from last year’s report where 73% of leaders agreed that going digital was key to achieving OE. Implementing digital technologies is now aligned with overall business goals with 55% leveraging technology to reduce operational risk and 55% to improve asset availability and uptime.

Paul Marushka, President and CEO at Sphera, commented, “As the third-annual Operational Excellence Index shows, digital transformation is upon us. As companies look for new ways to keep their people safe, their operations productive and their products sustainable, being able to tap into and monitor data from Industry 4.0 solutions will be a major differentiator for organizations looking to separate themselves from the competition. It’s not surprising that 90% of respondents agree that digital technology will accelerate operational excellence. We couldn’t agree more. Sphera believes digital is the wave of the future for operational risk mitigation.”

But while industry leaders agree digital is essential to OE, more than half are still trying to figure out what ‘digital transformation’ means for them, and 69% are just beginning their digital journey. The approach to digital matters, according to 83% of survey respondents, who admit they have relied on legacy systems to improve their business agility but had not embedded operational best practices cross-functionally.

The good news is the industry is on the brink of a major step forward when it comes to achieving OE through digitalization. Seventy-five percent of leaders recognize the need to create new, insight-driven business processes across enterprise functions. Advanced analytics and digital twins were highlighted as key solutions to help operators understand how to make better, safer planning and operational decisions. 

Scott Lehmann, VP, Product Management, ORM for Operations at Sphera, said, “This year’s survey clearly illustrates the challenges digital leaders face within their own organizations to understand what digital transformation means or could mean practically and tangibly to their company. While the pace of digital transformation and ROI is still in its early days, the survey points strongly to a rapid acceleration on the horizon. Digital leaders understand digital integration and the adoption of new technologies must focus on creating actionable insights to help underpin new cross-functional business processes that enhance decision-making and the way people work together.”

One survey respondent suggested: “The best approach to digital is not to use technologies to close gaps that you know already exist. Rather, start with a blank sheet of paper and define what you need – and then assess the available technologies.”

Petrotechnics, now a Sphera company, conducted the survey between October and November 2018, collecting 116 responses from a broad representation of functions, demographics and industries across the hazardous industries, including: oil, gas, chemicals, manufacturing, utilities, mining, engineering and other sectors. The survey included respondents from each major region – specifically Middle East (29%), Europe (28%), North America (28%), Asia Pacific (11%), Africa (3%) and South America (1%).

View the full report and results from the 2018/2019 Operational Excellence Index.

What are the core requirements of wide area CBRNe training?

Written by Steven Pike, Argon Electronics

When you are required to conduct wide area emergency preparedness training – be it in the setting of a chemical, biological, radiological, nuclear, and explosive (CBRNe) school, a dedicated military center or an industrial facility – the ongoing challenge for any CBRNe instructor is to be able to create a scenario that is realistic, safe, reliable and cost effective.

Trainees need to be equipped with the practical knowledge and skills to respond with confidence to an enormous variety of potential live incidents. And each threat brings with it a unique set of practical, physical and psychological tasks that need to be ‘experienced’ in order to be understood.

So what is the recommended approach to help instructors implement a realistic but safe CBRNe training environment?

Overcoming regulatory obstacles

While the spreading of chemical simulants can still occasionally be an option, strict environmental regulations generally make it unfeasible – and the use of any form of radiological source is almost always going to be unrealistic for all but the most high specialized of training facilities.

Simulant training also brings with it the problem of being very location-dependent, which restricts the ability to create scenarios in public settings or confined spaces. And there is the added difficulty of it not being able to be readily integrate simulant training with other conventional live training methods.

Wide-area instrumented training systems

When the highest degree of realism is required, a powerful modular exercise control system such as PlumeSIM enable instructors to take their CBRNe training exercises to an entirely new level. And it especially comes into its own in the context of counter terrorism scenarios, nuclear training drills and HazMat emergency exercises.

So what benefits does the PlumeSIM training system offer?

Portability – Plume-SIM is highly portable making it quick to set up and to use in any environment. The inclusion of a planning mode also means that instructors can easily prepare exercises on a laptop or PC without the need for any form of system hardware.

Realism – Students are equipped with simulators and GPS enabled players, to enable them to take part in large area exercises that can include sequential multi-threat releases or that integrate with third-party live training systems.

Instructor control – The instructor retains complete control of the exercise including the ability to decide the type, quantity, location and nature of the source.

Environment – Specific environmental conditions can also be easily defined by the user, including temperature and changes in wind direction.

Repeatability – The Plume-SIM’s exercise parameters can be saved so the identical scenario can be repeated as many times as required.

Real-time action -The trainees’ movements, progress and instrument usage can be monitored in real time from a central control station.

After action review – The recording of student activity in real-time provides useful after action review (AAR). This can be used to encourage discussions about the effectiveness of an exercise and to facilitate further improvements.

Data capture – All recorded exercise data can also be exported and emailed to external personnel for future analysis.

Pre-exercise capability – The table-top planning mode uses standard gamepad controllers which enables trainees to undertake pre-exercise practice to take place within the classroom environment. The exercise can also be recorded and analysed prior to heading for the live field training area.

Versatility – If environmental conditions preclude the ability to obtain or maintain continuous long-range radio communication then the scenario can be pre-loaded on the player unit for timed activation.

Compatibility – The Plume-SIM system is compatible with a wide variety of simulator equipment including the M4 JCAD-SIMCAMSIMAP2C-SIMAP4C-SIMRDS200-SIMEPD-Mk2-SIMAN/PDR-77-/VDR-2 and RDS100-SIM.

Room to grow – The modular system gives instructors the flexibility to expand their range of training equipment as and when their budgets allow.

Achieving the highest level of realism in CBRNe training is paramount – and assuring personnel safety will always be key.

A flexible, modular simulator-based training solution such as the PlumeSIM system can provide trainees with the opportunity to practice and perfect their response to a wide variety of highly-realistic simulated threats in a completely safe environment.


About the Author

Steven Pike is the Founder and Managing Director of Argon Electronics, a leader in the development and manufacture of Chemical, Biological, Radiological and Nuclear (CBRN) and hazardous material (HazMat) detector simulators. He is interested in liaising with CBRN professionals and detector manufacturers to develop training simulators as well as CBRN trainers and exercise planners to enhance their capability and improve the quality of CBRN and Hazmat training.