Tracing Contaminated Soil in Quebec

As reported in LaPresse, the Quebec Environment Minister, Isabelle Melancon, recently announced that the Quebec government will soon begin a pilot project to improve the “traceability” of contaminated soil from construction sites.

An earlier story in LaPresse stated the provincial authorities lost track of 3,000 tonnes of contaminated soil from a the Baril School in Hochelaga-Maisonneuve.  Management of the soil had been taken over by the company of a former Hell’s Angels partner, OFA Environment Management.

Remediation work at the Baril Elementary School in Hochelaga-Maisonneuve, Montreal

Soils were to be shipped to a Quebec-based company, accredited by the Quebec Ministry of the Environment. Instead, they were moved to another company with the same name, but located near East Hawkesbury, Ontario.  The firm apparently operated from a place that does not have an address.

There is no prohibition on shipping contaminated soil to Ontario, where the rules governing their treatment are less stringent than in Quebec. But in the case of the Hochelaga-Maisonneuve school, the contract specified that the floors were to be arranged in accordance with the Quebec law, according to the company in charge of supervising the construction site.

“We can not pretend that nothing is happening,” said Melançon at the end of a meeting of the Council of Ministers.

Last fall, La Presse revealed that “highly contaminated” soils had been dumped illegally on the banks of the Achigan River in Sainte-Sophie, in the Laurentians.

“[You have to] know where it’s going, what happened,” said the minister.  “We have to follow the soil better because, as we can see, this is the second horror story I am confronted with. ”

Quebec is currently in talks with potential suppliers to set up a “traceability” program. The pilot project should be launched shortly.

Mining company in B.C. fined $200,000 for Failure to Sample Effluent

Barkerville Gold Mines Ltd. (TSXV: BGM) was recently ordered to pay $200,000 after pleading guilty, in Provincial Court of British Columbia, to violations under the Canadian Fisheries Act related to the Metal Mining Effluent Regulations.

The fine was the result of routine inspections conducted by Environment and Climate Change Canada enforcement officers at the Cariboo gold mine in Central British Columbia.  During inspections, it was revealed that the company failed to complete sampling, notify authorities of having deposited effluent into fish-bearing water without authorization, and submit reports on time.  The effluent was deposited into Lowhee Creek, part of the Willow River system—an important fish-bearing watershed.  The Metal Mining Effluent Regulations authorize deposits of effluent provided that conditions stipulated in the regulations are respected.

About Barkerville Gold Mines Ltd. is focused on developing its extensive land package located in the historical Cariboo Mining District of central British Columbia. Barkerville’s mineral tenures cover 1,950 square kilometres along a strike length of 67 kilometres which includes several past producing hard rock mines of the historic Barkerville Gold Mining Camp near the town of Wells, British Columbia.

Drillers at Barkerville Gold Mines’ Cow Mountain gold project in the Cariboo mining district

U.S. EPA Approves Use of Updated ASTM Phase I Standard for Specific Properties

ASTM International recently updated its Phase I environmental site assessment standard for assessing large rural and forestland properties.  This Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process for Forestland or Rural Property, E 2247-16 (2016 rural property standard), replaces a 2008 version, numbered E2247-08. Purchasers of real property who intend to use the rural property standard for a closing on or after March 14, 2018, must use the 2016 standard.

Proposed purchasers seeking to establish the innocent purchaser, bona fide prospective purchaser or contiguous property owner defenses under the Comprehensive Environmental Response, Compensation and Liability Act must comply with the United States Environmental Protection Agency’s (U.S. EPA’s) All Appropriate Inquiries (AAI) standard at 40 C.F.R. pt. 312 prior to the purchase of the property.  While purchasers may follow the AAI criteria set forth in the regulations, most purchasers follow either the E1527-13 Phase I standard (defined below) or the 2008 rural property standard when performing pre-purchase Phase I environmental site assessments, as both standards are specifically identified in the regulation as satisfying AAI.

Effective March 14, 2018, the 2016 rural property standard replaces the 2008 standard for use in meeting AAI under EPA’s regulation. (Purchasers of real property who intend to use the rural property standard for a closing before March 14, 2018, however, may still use the 2008 standard.)  This change is of particular importance to solar and wind projects proposed for large tracts of rural and farmland property, as it allows for less rigorous onsite assessment than the site visit requirements used for assessing commercial and industrial properties, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, E 1527-13 standard.

Since Phase I environmental site assessments originated in 1986, the review of large rural and forestland properties has been difficult and time-consuming due to the site reconnaissance requirements alone.  The 2008 rural property standard alleviated some of the difficulties in the site reconnaissance requirements for assessing large rural tracts of property, as more particularly described in an earlier summary.

The 2016 rural property standard adds updated terminology that is used in the companion E1527-13 standard, but more importantly, changes some language that limited the more widespread use of the 2008 version.  First and foremost, the 2016 rural property standard eliminates the somewhat arbitrary 120-acres-or-more size requirement for use of the standard and simply requires the property to be “forestland” or “rural property.”  The standard includes a much broader definition of rural property, allows some alternative sourcing for agency records, and designates a specific time limit of 20 calendar days for receipt of materials requested by the consultant for review in completing Phase I.  The 20 calendar days requirement offers the benefit of an outside time limit, but also ensures that a Phase I environmental site assessment will take at least 20 days to complete if requested documentation is not received earlier. The 2016 rural property standard also relaxes some of the site visit criteria.

US officials consider robots to prevent mine spills

As reported by the Associated Press, Crumbling mine tunnels awash with polluted waters perforate the Colorado mountains and scientists may one day send robots creeping through the pitch-black passages to study the mysterious currents that sometimes burst to the surface with devastating effects.

One such disaster happened at the inactive Gold King Mine in southwestern Colorado in 2015, when the United States Environmental Protection Agency (U.S. EPA) accidentally triggered the release of 3 million gallons of mustard-colored water laden with arsenic, lead and other toxins. The spill tainted rivers in three states.

a man in a hard hat sprinkling lime (white power) into a pool of muddy water next to a culvert. Here, lime is added to a settling pond to assist in the pH adjustment of the water (Credit: Eric Vance/U.S. EPA)

Now the U.S. EPA is considering using robots and other sophisticated technology to help prevent these types of “blowouts” or clean them up if they happen. But first, the agency has to find out what’s inside the mines, some of which date to Colorado’s gold rush in the 1860s.

Wastewater laden with toxic heavy metals has been spewing from hundreds of inactive mines nationwide for decades, the product of complicated and sometimes poorly understood subterranean flows.

Mining creates tainted water in steps: Blasting out tunnels and processing ore exposes long-buried, sulfur-bearing rocks to oxygen. The sulfur and oxygen mix with natural underground water flows to create sulfuric acid. The acidic water then leaches heavy metals out of the rocks.

To manage and treat the wastewater, the U.S. EPA needs a clear idea of what’s inside the mines, some of which penetrate thousands of feet into the mountains. But many old mines are poorly documented.

Investigating with robots would be cheaper, faster and safer than humans.

“You can send a robot into an area that doesn’t have good air quality. You can send a robot into an area that doesn’t have much space,” said Rebecca Thomas, project manager for the U.S. EPA’s newly created Gold King Superfund site, officially known as the Bonita Peak Mining District.

Instruments on the robots could map the mines and analyze pollutants in the water.

They would look more like golf carts than the personable robots from “Star Wars” movies. Hao Zhang, an assistant professor of computer science at the Colorado School of Mines, envisions a battery-powered robot about 5 feet long with wheels or tracks to get through collapsing, rubble-strewn tunnels.

Zhang and a team of students demonstrated a smaller robot in a mine west of Denver recently. It purred smoothly along flat tunnel floors but toppled over trying to negotiate a cluttered passage.

“The terrain is pretty rough,” Zhang said. “It’s hard for even humans to navigate in that environment.”

A commercial robot modified to explore abandoned mines — including those swamped with acidic wastewater — could cost about $90,000 and take three to four years to develop, Zhang said.

Robot in underground mine (Photo Credit: Tatlana Flower/AP File)

Significant obstacles remain, including finding a way to operate remotely while deep inside a mine, beyond the reach of radio signals. One option is dropping signal-relay devices along the way so the robot stays in touch with operators. Another is designing an autonomous robot that could find its own way.

Researchers are also developing sophisticated computerized maps showing mines in three dimensions. The maps illustrate where the shafts intersect with natural faults and provide clues about how water courses through the mountains.

“It really helps us understand where we have certainty and where we have a lot of uncertainty about what we think is happening in the subsurface,” said Ian Bowen, a U.S. EPA hydrologist. “So it’s a wonderful, wonderful tool.”

The U.S. EPA also plans to drill into mines from the surface and lower instruments into the bore holes, measuring the depth, pressure and direction of underground water currents.

Tracing the currents is a challenge because they flow through multiple mines and surface debris. Many tunnels and faults are connected, so blocking one might send water out another.

“You put your finger in the dike here, where’s the water going to come out?” Thomas said.

Once the U.S. EPA finishes investigating, it will look at technologies for cleansing the wastewater.

Options range from traditional lime neutralization — which causes the heavy metals dissolved in the water to form particles and drop out — to more unusual techniques that involve introducing microbes.

The choice has consequences for taxpayers.  If no company is found financially responsible, the EPA pays the bill for about 10 years and then turns it over to the state.  Colorado currently pays about $1 million a year to operate a treatment plant at one Superfund mine. By 2028, it will pay about $5.7 million annually to operate plants at three mines, not including anything at the Bonita Peak site.

The U.S. EPA views the Colorado project as a chance for the government and entrepreneurs to take risks and try technology that might be useful elsewhere.

But the agency — already dealing with a distrustful public and critical politicians after triggering the Gold King spill — said any technology deployed in Colorado will be tested first and the public will have a chance to comment before decisions are made.

“We’re certainly not going to be in the position of making things worse,” Thomas said. “So when I say we want to take risks, we do, but we want to take calculated, educated risks and not worsen water quality.”

Transport Canada publishes quick reference guide for first responders

As part of the Government of Canada’s ongoing commitment to providing first responders and emergency planners with the tools and resources they need to respond to a dangerous goods emergency, Transport Canada convened a meeting of the Steering Committee on First Responder Training today.

The meeting brought together stakeholders and government representatives to help steer the development of a national training curriculum for personnel who respond to railway incidents involving the transportation of dangerous goods.

At the meeting, Transport Canada announced the publication of a quick reference guide, You’re Not Alone!, which is designed to help first responders at the scene of an incident involving flammable liquids.  The guide outlines important safety measures and groups them into five steps as part of emergency planning.

The guide was added to Safety Awareness Kits published by Transport Canada in 2017 and is aimed at first responders and communities.

Transport Canada published these kits and the quick reference guide to raise community awareness of existing available resources on dangerous goods.

The Honourable Marc Garneau, Minister of Transport, in a statement said: “Communities and first responders need to know that if a dangerous goods incident occurs, they’re not alone, and there are resources available to help. The safe transportation of dangerous goods by rail remains one of my top priorities.  We all share a common goal of making sure everyone is prepared for a dangerous goods emergency and the ‘You’re Not Alone!’ quick reference guide is an important piece of that preparation.”

The reference guide can be accessed here.

Unique oil spill in East China Sea frustrates scientists

As reported by Cally Carswell in Nature, When the Iranian oil tanker Sanchi collided with a cargo ship, caught fire and sank in the East China Sea in mid-January, an entirely new kind of maritime disaster was born. Nearly two weeks later, basic questions remain unanswered about the size of the spill, its chemical makeup and where it could end up. Without that crucial information, researchers are struggling to predict the short- and long-term ecological consequences of the incident.

Sanchi Oil Tanker partially explodes in East China Sea (Photo Credit: CNN)

“This is charting new ground, unfortunately,” says Rick Steiner, a former University of Alaska professor in Anchorage who has studied the environmental impacts of oil spills and consulted with governments worldwide on spill response. “This is probably one of the most unique spills ever.”

The infamous spills of the past — such as the Deepwater Horizon disaster in the Gulf of Mexico in 2010, or the Exxon Valdez tanker rupture in Alaska’s Prince William Sound in 1989 — involved heavier crude oil. It can remain in the deep ocean for years and has chronic impacts on marine life. The Sanchi carried a little more than 111,300 metric tons of natural gas condensate, a lighter, more volatile petroleum product which doesn’t linger as long in the environment. Condensate has never before been unleashed into the sea in large quantities.

Unlike heavy crude, condensate doesn’t accumulate in shimmering slicks on the water’s surface, which makes it difficult to monitor and contain. Neither does it sink to the ocean floor, as do some of the heavier constituents in crude over time. Rather, it burns off, evaporates or dissolves into the surface water, where some of its chemical components can linger for weeks or months.

“Most oil spills have a chronic toxicological effect due to heavy residuals remaining and sinking over time,” says Ralph Portier, a marine microbiologist and toxicologist at Louisiana State University in Baton Rouge. “This may be one of the first spills where short-term toxicity is of most concern.”

Missing science

A significant, but unknown, portion of the Sanchi’s condensate probably fuelled the fires that followed the collision. In the waters immediately surrounding the tanker, Portier says, the conflagration and gaseous fumes would have killed off or injured phytoplankton, along with birds, marine mammals and fish that were caught in the vicinity when the tanker ignited.

Moving beyond the fire, the impact of the accident becomes harder to discern. That’s because the exact chemical composition of the condensate has not yet been made public, Steiner says, and because no one knows how much of the condensate dissolved into the water.

“The part I’m most worried about is the dissolved fraction,” Steiner says. Toxic chemicals in the condensate could harm plankton, fish larvae and invertebrate larvae at fairly low concentrations at the sea surface, he says. Fish could suffer reproductive impairments so long as chemicals persist in the water, and birds and marine mammals might experience acute chemical exposure. “In a turbulent, offshore environment, it dilutes fairly quickly,” he says. “But it’s still toxic.”

Because this type of spill is new, Portier says, researchers don’t yet understand the ultimate consequences of acute exposure to condensate in the sea, where it’s breaking down and dispersing. “That’s really where the science is missing,” he says.

Destination unknown

Researchers are also scrambling to assess where pollutants from the Sanchi could travel. Groups in both China and the United Kingdom have run ocean-circulation models to predict the oil’s journey, and the models agree that much of the pollution is likely to end up in a powerful current known as the Kuroshio, which flows past southeastern Japan and out to the North Pacific. The European models suggest that chemicals from the Sanchi could reach the coast of Japan within a month. But the Chinese models indicate that they are unlikely to intrude on Japanese shores at all.

Katya Popova, a modeller with the National Oceanography Centre in Southampton, UK, isn’t sure why the models disagree. But she says that the discrepancy points to the importance of forging international collaborations to increase confidence in model projections during emergencies. “This is something that the oil industry should organize and fund to improve preparedness,” she says.

Fangli Qiao with China’s State Oceanic Administration in Qingdao says his group’s models indicate that the pollution’s probable path overlaps with Japanese sardine and anchovy fisheries. But Popova cautions that the models are not necessarily good indicators of potential harm to fisheries or coastlines.

“All we’re saying is, if something is spilled here at this time, we can give you the most probable distribution,” she says. “We don’t know what type of oil or how much.” Those are crucial details because condensate components could degrade or evaporate before reaching important fisheries or shores. “A monitoring programme is the most pressing need right now,” Popova says, “to see where it goes and in what concentration.”

Yet Steiner says that comprehensive environmental monitoring doesn’t seem to have started. Official Chinese-government statements have included results from water-quality monitoring at the wreckage site, but none from the downstream currents that could be dispersing the pollution. “Time is of the essence, particularly with a volatile substance like condensate,” Steiner says. “They needed to immediately be doing plankton monitoring, and monitoring of fish, sea birds. I’ve seen no reports of any attempt to do that.”

Nature 554, 17-18 (2018)

doi: 10.1038/d41586-018-00976-9

Key Developments in Environmental Law in Canada from 2017

A book on the developments in environmental law in Canada during 2017 was recently published by Thomson Reuters.  Edited by Stanley D. Berger of Fogler Rubinoff LLP, the book includes a number of interesting chapters related to contaminated sites and the issues raised in the Midwest Properties Ltd. v. Thordarson (“Midwest”) court case.  The Midwest case is part of a possible trend in Canada toward awarding damages based on restoration costs rather than diminution in value.  If nothing, else the Midwest Case has introduced uncertainty to the law of damages in contaminated sites cases.

In the chapter written by Natalie Mullins, a litigation partner in the Advocacy and Environmental groups in the Toronto office of Gowling WLG, on the evolution and current state of law on damages in contaminated sites, she states that despite being explicit about awarding compensatory damages only under section 99 of the Alberta Environmental Protection Act (“EPA”) and not at common law, the Alberta Court of Appeal may have implied that restoration costs are the default measure of damages in contaminated sites cases.  She also explores some other critical issues that have arisen post-Midwest, such as:

  • Whether diminution in value is still relevant to the measure of damages;
  • What it means to “restore” a real property;
  • How the court can take a proactive role to ensure that awards made to benefit the environment actually meet that objective; and
  • How defence counsel might prevent similar awards in the future, and how plaintiff’s counsel might use the case to obtain significant damages for their clients.

An interesting point raised by Ms. Mullins in her contaminated sites chapter is that in recent court cases, highlighted with Midwest, court decisions may be paving the way for plaintiffs to recover very significant damage awards for the contaminated of their sites that grossly exceed their actual loss and, in certain circumstances, may be completely unwarranted.

Ms. Mullins questions if the Midwest decision has created the potential for litigants to profit off purchasing contaminated sites and for defendants to face double jeopardy following judgment at trial.

The book is available at online for $144 (Cdn.).

 

Remediation of Trichoroethane (TCE) – contaminated groundwater by persulfate oxidation

Researchers in Taiwan performed field trials on the ability of persulfate to remediate trichloroethane (TCE) contaminated groundwater.  The purpose of the field trial was to (1) evaluate the efficacy of TCE treatment using persulfate with different injection strategies; (2) determine the persistence of persulfate in the aquifer; (3) determine the persulfate radius of influence and transport distance; and (4) determine the impact of persulfate on indigenous microorganisms during remediation.

The researchers discovered that persulfate removed up to 100% TCE under specific conditions.  Overall, they found a single, higher does of persulfate was more effective at destroying TCE than two separate, smaller doses.

Results show that sequential injections of a large amount of persulfate are suggested to maintain good long-term performance for TCE treatment. This paper is available at http://pubs.rsc.org/en/content/articlehtml/2018/ra/c7ra10860e.

Arsenic found to control uranium contamination

As reported by World Nuclear News, an international team led by the University of Sheffield has discovered that the toxic element arsenic prevents uranium from an abandoned mine in the UK migrating into rivers and groundwater.  The discovery could help in the remediation of former uranium mines and other radioactively contaminated areas around the world, the scientists believe.

The team of scientists – led by the Department of Materials Science and Engineering at the University of Sheffield – studied the uranium and arsenic in the topsoil at the abandoned South Terras uranium mine in Cornwall, England.

The researchers used some of the world’s brightest synchrotron X-ray microscopes – the Swiss Light Source and the USA’s National Synchrotron Light Source – to unearth what is believed to be the first example of arsenic controlling uranium migration in the environment.  These microscopes use intense X-ray beams to focus on a spot just one-millionth of a metre in diameter.

“We use synchrotron X-rays to identify and isolate the microscopic uranium particles within the soils and determine their chemical composition and mineral species,” said co-author of the study, Neil Hyatt.  “It’s like being able to find tiny uranium needles in a soil haystack with a very sensitive metal detector.”

Source: © Claire Corkhill
The abandoned South Terras mine in Cornwall where uranium was mined until 1930

According to the study – published on 14 December in Nature Materials Degradation – ore extraction processes and natural weathering of rock at the South Terras mine has led to the proliferation of other elements during degradation, particularly arsenic and beryllium, which were found in significant concentrations.  The arsenic and uranium were found to have formed the highly insoluble secondary mineral metazeunerite.

“Significantly, our data indicate that metazeunerite and metatorbernite were found to occur in solid solution, which has not been previously observed at other uranium-contaminated sites where uranyl-micas are present,” the study says.

Claire Corkhill, lead author of the study, said: “Locking up the uranium in this mineral structure means that it cannot migrate in the environment.”

The researchers concluded that this process at South Terras – which operated between 1873 and 1930, producing a total of 736 tonnes of uranium – is the result of a set of “rather unique” geological conditions.  “To identify this remediation mechanism at other sites, where arsenic and uranium are key co-contaminants, further detailed mineralogical assessments are required,” they said.  “These should be considered as an essential input to understand the ultimate environmental fate of degraded uranium ore.”

“The study has far-reaching implications, from the remediation of abandoned uranium mines across the world, to the environmental clean-up of nuclear accidents and historic nuclear weapons test sites,” according to the scientists.  “It also shows the importance of local geology on uranium behavior, which can be applied to develop efficient clean-up strategies.”

Keystone Pipeline Spill Response deemed a Success

In early December, a section of the Keystone Pipeline leaked 210,000 gallons of oil near the South Dakota City of Amherst.  Representatives of Trans-Canada Pipeline, the owner of the pipeline, deemed the detection of the leak and prompt spill response as an example of its exemplary contingency measures that are in place to detect and respond to such incidents.

An aerial view shows the darkened ground of an oil spill which shut down the Keystone pipeline between Canada and the United States, located in an agricultural area near Amherst, South Dakota.
REUTERS/Dronebase

When fully complete, the Keystone Pipeline will carry bitumen from the Alberta oil fields to refineries in Texas.  At present, the pipeline runs from Alberta, through North Dakota and South Dakota.

As reported in the Prairie Public News, Julie Fedorchak of the North Dakota Public Service Commission (PSC) stated that the company’s quick response to the incident shows that its response plan worked perfectly.

“The system was shut down within three minutes,” Fedorchak said.  “And importantly, the spill was detected.”

Fedorchak said the spill showed up on its detection equipment, and the people overseeing system noticed it, and.

“They knew it was something off,” Fedorchak said.  “And the quick shutdown prevented what could have been a much more difficult spill.”

But Fedorchak said there are still questions about why the spill happened.

“It’s a new line,” Fedorchak said. “New lines like this shouldn’t be having those kinds of issues.”

Fedorchak said it’s important that the company and federal pipeline regulators do the tests needed on that pipeline, to try to figure out what caused it.

“That’ll be a learning opportunity for the entire industry,” Fedorchak said.

The company believes it may have been caused by an abrasion on the pipeline coating, that happened during construction.

“Perhaps there were some things in the ground that could have caused it,” Fedorchak said. “Or it could have been a problem with the pipeline protection itself. They’re looking at a number of things.”

Clean-up work continues at the spill site.