IATA rolls out DG AutoCheck to enhance safety in dangerous goods transport

The International Air Transport Association (IATA) recently launched Dangerous Goods AutoCheck (DG AutoCheck), a new innovative solution for the air cargo industry, which will enhance safety and improve efficiency in the transport of dangerous goods by air, and support the industry’s goal of a fully digitised supply chain.

“The air transport industry handles over 1.25 million dangerous goods shipments transported every year. With the air cargo growth forecasted at 4.9 percent every year over the next five years, the number is expected to rise significantly. To ensure that the air cargo industry is ready to benefit from this growth, it needs to adopt modern and harmonised standards that will facilitate safe, secure and efficient operations, particularly in relations to carriage of dangerous goods. DG AutoCheck is a significant step towards achieving this goal,” said Nick Careen, senior vice president, airport, passenger, cargo and security, IATA.

FACILITATING ACCEPTANCE CHECKS

DG AutoCheck is a digital solution that allows the air cargo supply chain to check the compliance of the Shipper’s Declaration for Dangerous Goods (DGD) against all relevant rules and regulations contained in the IATA Dangerous Goods Regulations.

The tool enables electronic consignment data to be received directly, which supports the digitisation of the cargo supply chain. Optical Character Recognition (OCR) technology also transforms a paper DGD into electronic data. This data is then processed and verified automatically using the XML data version of the DGR.

DG AutoCheck also facilitates a ground handlers or airline’s decision to accept or reject a shipment during the physical inspection stage, by providing a pictorial representation of the package, with the marking and labelling required for air transport.

“The DGR lists over 3,000 entries for dangerous goods. Each one must comply with the DGR when shipped. The paper DGR consists of 1,100 pages. Manually checking each shipper’s declaration is a complex and time consuming task. Automation with DG AutoCheck offers us a giant step forward. The cargo supply chain will benefit from greater efficiency, streamlined processes and enhanced safety,” said David Brennan, assistant director, cargo safety and standards, IATA.

INDUSTRY COLLABORATION

Collaboration is critical in driving industry transformation, especially for a business with such a complex supply chain. DG AutoCheck is a good example of effective industry partnerships.

An industry working group made up of more than twenty global organisations supported the development of DG AutoCheck. The group comprises airlines, freight forwarders, ground handlers and express integrators, including Air France-KLM CargoSwissportPanalpina and DHL Express.

“The air cargo supply chain is currently undergoing a major digital evolution. Collaboration across the industry is essential if the goal of a digitised electronic end-to-end messaging platform is to be realised. There is no time to lose as there is a growing demand from our customers for efficiency of electronic documentation throughout the supply chain,” said Nick Careen, senior vice president, airport, passenger, cargo and security, IATA.

 

Microbial Biotechnology in Environmental Monitoring and Cleanup

A new book on the advances in microbial biotechnology in environmental monitoring and clean-up has just be published by IGI Global.  The book is part of the Advances in Environmental Engineering and Green Technologies Book Series.

In the book, the authors state that pollutants are increasing day by day in the environment due to human interference. Thus, it has become necessary to find solutions to clean up these hazardous pollutants to improve human, animal, and plant health.

Microbial Biotechnology in Environmental Monitoring and Cleanup is a critical scholarly resource that examines the toxic hazardous substances and their impact on the environment. Featuring coverage on a broad range of topics such as pollution of microorganisms, phytoremediation, and bioremediation, this book is geared towards academics, professionals, graduate students, and practitioners interested in emerging techniques for environmental decontamination.

This book is a collection of various eco-friendly technologies which are proposed to under take environmental pollution in a sustainable manner. the role of microbial systems has been taken as a tool for rapid degradation of xenobiotic compounds. Application of microbes as bio-inoculants for quality crop production has been emphasized by some authors. Conventional method of bioremediation using
hyper-accumulator tree species has been given proper weightage. The emerging role of nanotechnology in different fields has been discussed. The contents of book are organized in various sections which deal about microbial biodegradation, phytoremediation and emerging technology of nanocompounds in agriculture sector.

Chapter 18, which covers phytoremedation, acknowledges that environmental pollution with xenobiotics is a global problem and development of inventive remediationtechnologies for the decontamination of impacted sites are therefore of paramount importance.
Phytoremediation capitalizes on plant systems for removal of pollutants from the environment.  Phytoremediation is a low maintenance remediation strategy and less destructive than physical or chemical remediation.  Phytoremediation may occur directly through uptake,translocation into plant shoots and metabolism (phytodegradation) or volatilization (phytovolatilization) or indirectly through plant microbe-contaminant interactions within plant root zones(rhizospheres).  In recent years, researchers have engineered plants with genes that can bestow superior degradation abilities. Thus, phytoremediation can be more explored, demonstrated, and/or implemented for the cleanup of metal contaminants, inorganic pollutants, and organic contaminants.

Topics Covered

The 400-page, 20 chapter book covers many academic areas covered including, but are not limited to:

  • Bio-Fertilizers
  • Bioremediation
  • Microbial Degradation
  • Microorganisms
  • Organic Farming
  • Pesticide Biodegradation
  • Phytoremediation

 

 

U.S. DOD Rapid Innovation Fund for Innovative Technology in Emergency Response Tools

The United States Department of Defence (U.S. DoD) Rapid Innovation Fund facilitates the rapid insertion of innovative technologies into military systems or programs that meet critical national security needs. DoD seeks mature prototypes for final development, testing, evaluation, and integration. These opportunities are advertised under NAICS codes 541714 and 541715. Awardees may receive up to $3 million in funding and will have up to two years to perform the work. The two phases of source selection are (1) white paper submission and (2) invited proposal submission. The window of opportunity for submitting white papers expires on April 12, 2018 (due by 3:00 PM ET).
Among the numerous R&D opportunities described in the BAA are topics relevant to the development of environmental monitoring and emergency response tools:

  • Handheld automated post-blast explosive analysis device (USDR&E-18-BAA-RIF-RRTO-0001). Handheld automated detection and characterization of explosive residue collected on-scene after an explosion.
  • Handheld networked radiation detection, indication and computation (RADIAC) (DTRA-17-BAA-RIF-0004). A lighter, more compact system for integration into CBBNE situational awareness software architecture of Mobile Field Kit and Tactical Assault Kit.
  • 3-D scene data fusion for rapid radiation mapping/characterization (DTRA-17-BAA-RIF-0005).
  • Immediate decontamination (CBD-18-BAA-RIF-0001). A spray-on decontaminant that can be applied in a single step in ~15 minutes on hardened military equipment.
  • Hyperspectral aerial cueing for chemical, biological, radiological, nuclear and explosive (CBRNE) mobile operations (PACOM-18-BAA-RIF-0001). Real-time detection via drone.
  • Mobile automated object identification and text translation for lab equipment (DTRA-17-BAA-RIF-0003). A tool to help users recognize equipment, chemicals, and potentially hazardous material in real time.

https://www.fbo.gov/spg/ODA/WHS/REF/HQ0034-18-BAA-RIF-0001A/listing.html
[NOTE: This BAA was also issued as HQ0034-18-BAA-RIF-0001B.]

BC Ministry of the Environment: Staffing Announcement

The British Columbia Environment Ministry recently announced that Danielle Grbavac has been named as as Director, Land Remediation within the Environmental Emergencies and Land Remediation Branch, Environmental Protection Division, Ministry of Environment and Climate Change Strategy.

 

Danielle has 15 years of experience working in environmental science, including marine geoscience, coastal geomorphology, climate change and most recently contaminated sites, both for the provincial and federal governments. She holds a Bachelor of Science in Geography (hons) from the University of Victoria and a Master of Science in Environmental Geomorphology from the University of Oxford. She has also completed graduate level studies in public administration from the University of Victoria.

Before joining the BC public service, Danielle worked as a marine geoscientist for the Geological Survey of Canada. Since joining the ministry she has worked on regulatory development in the Climate Action Secretariat and issues management for BC Parks and the Conservation Officer Service. She joined the Land Remediation Section in 2015, as Operations Manager, leading a diverse team of professionals responsible for oversight of high risk site classification and site identification, as well as the development of policy for legislative and regulatory change and related guidance for BC’s site remediation program. Additionally, Danielle has held an associate faculty position at Royal Roads University for nearly a decade teaching in the School of Environment and Sustainability and the International Study Centre.

Danielle brings a wealth of knowledge and background, and great interpersonal skills to her new role. She is looking forward to identifying priorities for contaminated sites work after the recent standards updates in the Stage 10 & 11 Contaminated Sites Regulation amendments in November 2017. She intends to maintain and strengthen the ministry’s relationships with its partners and stakeholders within the contaminated sites community.

Canada: $150K fine for improper storage of petroleum products

It could be a sign of a toughening of enforcement in Canada.  A company in Saskatchewan was recently fined $150,000 for improper storage of petroleum hydrocarbons under the Storage Tank Systems for Petroleum Products and Allied Petroleum Products Regulations, made pursuant to the Canadian Environmental Protection Act, 1999.  The company, Crop Production Services (Canada) Inc., recently plead guilty to transferring petroleum products into unidentified storage-tank systems.  Storage of petroleum products in unmarked containers is a violation of the federal regulations.

In 2016, enforcement officers from Environment Canada and Climate Change conducted an investigation of Crop Production Services (Canada) Inc.  During the course of the inspection, they discovered the petroleum product in an unmarked container.  No spillage of petroleum product had occurred.

The Court ordered the company to pay a total penalty of $150,000 to be directed to the federal Environmental Damages Fund.  As a result of this conviction, the company’s name will be added to the Environmental Offenders Registry.

Crop Production Services (Canada) Inc. (CPS) is a leading provider of agricultural products and services for western Canadian growers. A subsidiary of Nutrien Ltd., CPS provides a wide range of services to the agricultural industry including agronomy Services; crop protection;  plant nutrition; precision agriculture; fuel, oil and lubricants; and storage and handling. CPS has over 220 retail locations in communities across Western Canada.

CPS offers Esso bulk fuels to the farm and commercial market across the Prairies through an agreement with Imperial Oil

The Storage Tank Systems for Petroleum Products and Allied Petroleum Products Regulations aim to reduce the risk of contaminating soil and groundwater due to spills and leaks of petroleum products from storage-tank systems.  The regulations require owners and operators to identify their storage-tank systems with an identification number from Environment and Climate Change Canada. This requirement allows an inventory of storage-tank systems to be maintained in a registry that captures the type of tank, the type of piping, and the year of installation of the storage-tank system. Suppliers that deliver petroleum products and allied petroleum products (e.g., thinner for vinyl coatings) are prohibited from transferring petroleum products into any storage tank, unless the storage-tank system identification number is visible.

Contaminated sites could pose issue for Saskatoon’s transit plan

As reported in the Phil Tank in the Saskatoon Star Phoenix, the city of Saskatoon has tested the soil at several locations where transit stations are planned for the bus rapid transit (BRT) system. The results of the tests will not be known until later this month, but Mayor Charlie Clark says contaminated sites, like former gas stations, pose a big issue for Canadian cities.

The testing took place along the proposed BRT red line, which is expected to run on 22nd Street on the west side of the river and on Eighth Street on the east side.

“Brownfields (contaminated sites) along some of these major streets are a real problem,” Clark told reporters Tuesday at city hall. “We have a lot of gas stations that have been abandoned, left there and the owners are just sitting on them and not allowing them to be sold and redeveloped.”

The CP railway crossing on 22nd Street, one of the main routes of the BRT system. (Google Maps)

Clark, who was promoting an event to gather residents’ input on the city’s various growth plans, said he would like to see clearer rules from the province and the federal government on contaminated sites.

The City of Saskatoon has limited tools to force sites to be sold or redeveloped or to compel owners to clean up contamination, he said.

“We frankly don’t think the taxpayers of Saskatoon should have to pay to clean up contaminated sites where somebody was operating a gas station or a fuel distribution site for many years, generating a profit off of it, and then leaving it as a barren and wasted piece of land,” Clark said.

The city’s brownfield renewal strategy is among a number of different planks in its overall growth strategy, which was featured at a community open house in early March.

Brownfield Renewal Strategy

Saskatoon’s Brownfield Renewal Srategy (“BRS”) states that abandoned, vacant, derelict, underutilized properties shouldn’t stop revitalization.  The strategy supports redevelopment of brownfield sites to maximize their potential and revitalize the main transportation corridors within the City.  The goal of the BRS is to create environmental guidance manuals, provide advisory services, and implement incentive programs to encourage brownfield redevelopment.

The City of Saskatoon sees the BRS as requirement for achieving the City’s target of achieving 50% growth through infill.

The BRS will create a suite of tools and programs designed to assist prospective developers and property owners with the environmental requirements associated with impacted and potentially impacted brownfields.

Mayor Clark noted Saskatoon and its surrounding region has been identified as the fastest growing metropolitan area in Canada, with 250,000 additional residents anticipated in the next few decades.

Lesley Anderson, the director of planning and development with the City of Saskatoon, talks renewal strategy

Ontario Announces Cleantech Strategy & Support for Cleantech Companies

Article by Richard CorleySophie Langlois and Catherine Lyons

Goodmans LLP

Recently, the Ontario Minister of Research, Innovation and Science, Reza Moridi, launched Ontario’s Cleantech Strategy (the “Cleantech Strategy“) which aims to catalyze the growth of Ontario’s clean technology sector to support sales into a global market which is expected to grow to $2.5 trillion by 2022. The Cleantech Strategy is aligned with Ontario’s five-year Climate Change Action Plan (CCAP) to fight climate change, reduce greenhouse gas (GHG) pollution, and drive the transition to a low-carbon economy.  It is also aligned with Ontario’s Business Growth Initiative (BGI), which is, among other things, assisting innovative companies to scale up.

Purpose of the Cleantech Strategy

The Cleantech Strategy bolsters Ontario’s commitment to support the development of new, globally competitive low-carbon technologies that will contribute to fighting climate change and to meeting Ontario’s GHG pollution reduction targets of 15% below 1990 levels by 2020, 37% by 2030 and 80% by 2050. As Minister Moridi explained:

By helping our cleantech companies get ready to scale – and helping them to connect to early customers here in Ontario – Ontario is supporting innovation and reducing emissions and environmental impact across industries. Over the longer term, we expect to see more scaled-up Ontario cleantech companies recognized as North American leaders.

Ontario has the largest share of cleantech companies in Canada and the Cleantech Strategy further supports the province’s leadership in GHG pollution reduction through the development and scaling of cleantech solutions.

Principal Elements of the Cleantech Strategy

Based on Ontario’s strengths in cleantech and global demand, the Cleantech Strategy prioritizes the following four cleantech sub-sectors: energy generation and storage, energy infrastructure, bio-products and bio-chemicals, and water and wastewater.

The Cleantech Strategy has four interrelated pillars through which the province intends to meet its objective of helping cleantech companies scale up and meet global demand:

  1. Venture and scale readiness – strengthening opportunities for in-house research and development, strengthening entrepreneur knowledge of key global markets, reducing regulatory uncertainty to facilitate access to capital, and attracting and developing a strong pool of sales, marketing and management talent
  2. Access to capital – increasing access to scaling capital, providing guidance on available provincial and federal cleantech funding, and simplifying access to such capital
  3. Regulatory modernization – streamlining the regulatory environment where possible to reduce barriers for cleantech market entry, supporting performance-based standards and approvals processes, and supporting the development of harmonized industry standards
  4. Adoption and procurement – increasing demonstration and pilot opportunities to de-risk and validate new technologies, and addressing prescriptive and risk-averse procurement practices

Initiatives funded through Ontario’s carbon market as part of the Cleantech Strategy include the Global Market Acceleration Fund (GMAF) and the Green Focus on Innovation and Technology (GreenFIT).

The Global Market Acceleration Fund

The GMAF will help companies lower the risk associated with expanding production of a proven clean technology.  The fund will also assist companies with the cost of scaling up inventory, distribution and sales to domestic and global markets.  The GMAF can provide between $2 million and$5 million of funding to Ontario-based companies with promising GHG reduction technologies and scale-up and export potential.  To receive funding, these companies must be able to demonstrate funding commitments for at least 50% of the eligible project costs. A total of $27 million has been allotted to the GMAF.

Green Focus on Innovation and Technology

Through the GreenFIT program, Ontario will commit $10 million towards demonstration projects of new technologies and services. Early adoption of these new technologies and services will benefit both the adopting public sector institutions with support for their emissions reductions and participating companies with opportunities for validation and credibility for their products.

The content of this article does not constitute legal advice and should not be relied on in that way. Specific advice should be sought about your specific circumstances.

_________________

About the Authors

Richard Corley is a partner at Goodmans LLP and leads the firm’s Cleantech Practice Group.

Sophie Langlois is an associate at Goodmans LLP.  She practices in the area of corporate and securities law and mergers and acquisitions.

Catherine Lyons is a partner at Goodmans LLP.  She dedicates her practice to representing both private and public sector clients at the intersection of municipal and environmental law.

 

This article was first published on the Goodmans LLP website.

Recycling end-of-life materials may be perpetuating toxic chemicals in new products

A researcher from the Canadian Environmental Law Association and paralegal, Fe de Leon, recently co-published a paper with HEJSupport International Co-Director Olga Speranskaya to bring public attention to toxic chemicals that appear in new products made out of recycled materials.  The authors of the paper argue that many countries have made investments into achieving progress towards a circular economy, but little or no attention is paid on toxic chemicals that appear in new products made out of recycled materials. The paper cites a growing body of evidence of how a circular economy fails to address concerns regarding toxic chemicals in products.

Fe de Leon, Researcher and Paralegal, CELA

In the paper, the authors cite a 2017 study prepared by IPEN, an environmental activist organization that focuses on synthetic chemicals, which revealed elevated concentrations of globally targeted toxic flame retardants in plastic toys.  The IPEN study claimed to have found elevated concentrations of toxic persistent organic pollutants (POPs) in samples of plastic toys purchased in different stores in Canada and other 25 countries globally.  The study further stated that the levels of some chemicals were more than five times higher than recommended international limits.  These chemicals include PBDEs (polybrominated diphenyl ethers) such as octabromodiphenyl ether (OctaBDE), decabromodiphenyl ether (DecaBDE); and SCCPs (short chain chlorinated paraffins).  They are listed under the Stockholm Convention on Persistent Organic Pollutants and are internationally banned or restricted due to their hazardous characteristics.  They all are persistent, highly toxic, travel long distances and build up in the food chain.  However, their presence in new products, although they are banned or restricted, opens up the discussion of a problem regarding recycling as a key component of a circular economy.

The paper concludes that product recycling and a focus on a circular economy should be encouraged.  However, material flows should be free from hazardous chemicals, at the minimum those chemicals which have already been regulated under the international treaties.

Olga Speranskaya, HEJSupport International Co-Director, IPEN CoChair

CHAR Announces Approval of Funding Grant For CleanFyre Biocoal

CHAR Technologies Ltd. (the “Corporation”) (TSXV:YES) recently announced that it has been approved for a grant totalling $1,062,385 provided by the Government of Ontario through the Low Carbon Innovation Fund (“LCIF”).  The grant is in support of CHAR’s CleanFyre biocoal project, with participation from ArcelorMittal Dofasco (“Dofasco”), Canada’s largest flat roll steel producer and a lead user of CleanFyre within the project, Walker Environmental (“Walker”) as a feedstock supplier and BioLine Corporation (“Bioline”) as a feedstock pre-processor.

“This grant will allow CHAR to work with innovative and progressive companies, including Dofasco, Walker and Bioline, to further develop CleanFyre, a carbon neutral, sustainable, solid biofuel, that meets the strict requirements of the steelmaking industry,” said Andrew White, CEO of CHAR.  “The project will culminate with a 20-tonne trial in an operational blast furnace at Dofasco to prove CleanFyre’s applicability within the steel industry.”

CleanFyre is a carbon neutral solid biofuel, and through its implementation will allow users to significantly reduce their GHG emissions.  Project funding will be disbursed 50% in April, followed by four additional payments on successful milestone completion.

About CHAR

CHAR Technologies Ltd is a cleantech development and services company, specializing in biocarbon development (activated charcoal ‘SulfaCHAR’ and solid biofuel ‘CleanFyre’) and custom equipment for industrial air and water treatment, and providing services in environmental management, site investigation & remediation, engineering, and resource efficiency.

About Low Carbon Innovation Fund

The Low Carbon Innovation Fund is a fund to help researchers, entrepreneurs and companies create and commercialize new, globally competitive, low-carbon technologies that will help Ontario meet its GHG emissions reductions targets.  The Low Carbon Innovation Fund is part of Ontario’s Climate Change Action Plan and is funded by proceeds from the province’s carbon market.

Forward-Looking Statements

Statements contained in this press release contain “forward-looking information” within the meaning of Canadian securities laws.  When considering these forward-looking statements, you should keep in mind the risk factors and other cautionary statements in CHAR’s MD&A dated February 26th, 2018 and available under CHAR’s profile on www.sedar.com. Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

For further information please contact:

Andrew White
Chief Executive Officer
CHAR Technologies Ltd.
e-mail: andrew.white@chartechnologies.com
tel: 647-968-5347

Marie Verdun
Manager, Corporate Affairs
ArcelorMittal Dofasco
e-mail: marie.verdun@arcelormittal.com
tel: 905-548-7200 x2066

ArcelorMittal Dofasco, Hamilton, Ontario

Applied research is reclaiming contaminated urban industrial sites

As reported by Cody McKay in the Vancouver Sun, there is outstanding discovery research occurring at universities across Canada. Unfortunately, a significant proportion of this research doesn’t translate into commercial application.  Consecutive Canadian governments have attempted to tackle this challenge, focusing research dollars on particular aspects of the research-innovation ecosystem.  This has left those not in the funding limelight to cry protest, plead neglect or worse, be under-valued.  Yet the reality is that we need to support all types of research.

Canada needs researchers devoted to fundamental science, but also those who can take existing research knowledge and apply it to solve an identified challenge for society or for industry.

Enter collaborations with applied research.  And a Canadian-made solution.

There are tens of thousands of brownfield sites scattered across Canada — many of them in urban locations. “Brownfields” are those abandoned industrial sites, such as old gas stations, that can’t be redeveloped because of the presence of hazardous substances, pollutants or contaminants in the soil. As a result, they remain empty, barren eyesores for communities, financial drains for their landowners who can’t repurpose the land and environmental liabilities for future generations.

Over the past decade, a collaboration between Federated Co-operatives Limited, a Western Canada energy solutions company which owns a number of brownfield sites, and the University of Saskatchewan (U of S) developed a variety of methods to stimulate the bacteria in the soil to consume the petroleum-based contaminants more rapidly.

This U of S remediation method is faster than the natural attenuation process, which can take decades.  The U of S method has the potential to remediate a contaminated site in a northern climate in only a few months.  It is also less invasive and potentially more cost-effective than the “dig-and-dump” approach that is popular in some regions of Canada.  “Dig-and-dump” refers to excavating all the contaminated soil at site, transporting it to a landfill for disposal, and filling in the excavation with clean fill.  The research team provided an estimated cost savings on remediation of up to 50 percent, depending on the extent of contamination and the cost of dig-and-dump.  With an estimated 30,000 contaminated gas station sites in Canada, halving remediation costs represents a total potential savings of approximately $7.5 billion.

Collaborating with the University of Saskatchewan and Federated Co-op, and building on their earlier research, Dr. Paolo Mussone, an applied research chair in bio-industrial and chemical process engineering, and his colleagues at the Northern Alberta Institute of Technology (NAIT) Centre for Sensors and System Integration built sensors to monitor the bacteria and track how quickly the pollutants in the soil were degrading.  The team experimented with the technique and the sensors at an old fuel storage site owned by Federated Co-op in Saskatoon that had been leaking for 20 years.  They were able to use the technology to monitor the bacteria’s consumption and adjust the stimuli that increased this consumption in real time.

This applied research significantly shortened the time it took to clean the site, and only a few years later, the land is now home to a commercial retail space.

Dr. Mussone’s work is focused on building prototypes that use emerging nano- and biotechnologies.  The goal of this applied research is to help the energy sector improve operational efficiencies, reduce emissions and accelerate environmental remediation.  So where some would see the scars of industrial activity on the landscape, Dr. Mussone sees an opportunity to put his research into action.

Eventually, Dr. Mussone hopes to see the technology applied across Western Canada, where similar sites continue to hinder community-building efforts.

The science research undertaken by the University of Saskatchewan and Federated Co-op, and the collaborative applied research undertaken by NAIT, has led to a sustainable, commercial solution. Polytechnic institutions excel at this type of research translation.

Sometimes it is far too easy the federal government to forget about the impact of research, only focusing instead on the supply for new science dollars.  Across the country, universities, polytechnics and community colleges are each undertaking research that could have immediate impact, or future benefit.

Rather than pitting these fundamentally different models of research against one another, Canadians should celebrate the diversity of strengths that exist in our country.

Canada has excellent applied research opportunities that can be harnessed for economic impact.  Recognizing and supporting all types of research, and more significantly, fostering research collaboration amongst institutions with different research mandates and missions, is the surest and most positive way to build a sustainable science and innovation ecosystem for Canada.

Reclaiming contaminated land is NAIT Applied Research Chair Dr. Paolo Mussone’s mission