New Year, New Environmental Rules: Alberta’s Revised Remediation Rules Take Effect in 2019

by Dufferin Harper and Lindsey Mosher, Blake, Cassels & Graydon LLP

On January 1, 2019, significant amendments to Alberta’s Remediation Certificate Regulation came into force. These include:

  • Renaming the regulation the Remediation Regulation
  • Creating a site-based remediation certificate
  • Creating a new reporting requirement for impacts
  • Defaulting to the application of Tier 1 rather than Tier 2 Guidelines
  • Issuing a Tier 2 compliance letter
  • Establishing a new mandatory remedial measures timeline

As discussed in more detail below, many of the amendments address long-standing concerns within the existing remediation certification process. However, in several instances they also introduce new areas of regulatory uncertainty.

SITE-BASED REMEDIATION CERTIFICATE

One of the primary concerns with the existing regime is that it is too limited in scope. Although it provides for remediation certificates to be issued for specific areas of land impacted by a contaminant release, it does not enable a property owner to obtain regulatory signoff for a complete site as opposed to only an area of a site.

In response to that concern, the Remediation Regulation introduces a new type of remediation certificate applicable to a complete site, which is referred to as a “site-based remediation certificate”. A site-based remediation certificate confirms that all contaminants and areas of potential concern both on and off site have been addressed and necessarily involves the submission of more extensive documentation than what is required for a limited remediation certificate.  To assist in the application process, the Alberta government is expected to develop and release a new application form and guide for a site-based remediation certificate application prior to January 2019.

NEW REPORTING REQUIREMENT

A person responsible for a release currently has a statutory obligation to report the release. In addition to this existing obligation, the Remediation Regulation imposes an additional obligation to report any new information about the “impact” of a released substance. Neither of the terms “new information”, nor “impact”, are defined in the Remediation Regulation, and it remains to be seen what additional guidance, if any, will be provided to clarify the scope of the additional obligation. Until that occurs, or until the courts clarify the scope of the obligation, uncertainty will likely prevail.

APPLICATION OF TIER 1 VERSUS TIER 2 GUIDELINES

Under the current Remediation Certificate Regulation, a person applying for a remediation certificate may elect to apply either generic Tier 1 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines) or site -specific Tier 2 Soil and Groundwater Remediation Guidelines (Tier 2 Guidelines).

The Remediation Regulation removes this discretionary election. Instead, the Tier 1 Guidelines will always be the default remediation standard. Regulatory approval will be required to remediate to Tier 2 Guidelines.

TIER 2 COMPLIANCE LETTER

Another major concern (and criticism) of the existing regime involves the situation where contaminant levels exceed Tier 1 Guidelines but not Tier 2 Guidelines. In such a situation, if the Tier 2 Guidelines are applied, the affected area will not require remediation. Notwithstanding the levels exceed Tier 1 Guidelines and would otherwise require remediation but for the application of the Tier 2 Guidelines, the regulator’s position is that, since there has been no “remediation”, it is unable to issue a “remediation certificate”.  The Remediation Regulation addresses this situation, albeit indirectly.  Rather than amending the scenarios under which a remediation certificate can be issued to account for the above situation, the Remediation Regulation introduces a hybrid type of approval, described as a “Tier 2 compliance letter”. Such a letter will be issued by the regulator when it is satisfied the area or the site meets Tier 2 Guidelines and therefore does not need to be remediated. The difficulty with such a hybrid approach is that it is unclear what type of legal protection a “Tier 2 compliance letter” provides. For example, a remediation certificate currently provides protection against a subsequent environmental protection order being issued for the same contaminant and area. A Tier 2 compliance letter provides no similar protection.  Furthermore, no reference to a Tier 2 compliance letter is set out in Environmental Protection and Enhancement Act and its legal significance is therefore unknown.

NEW REMEDIAL MEASURES TIMELINE

The Remediation Regulation introduces a mandatory timeline for remedial measures for all releases reported after January 1, 2019. If remediation cannot be completed to the satisfaction of the regulator within the following two years, a remedial action plan acceptable to the regulator must be submitted in accordance with the requirements of the Remediation Regulation.

The timeline is not mandatory for the complete remediation of a release. Rather, it is a timeline for the submission of a remedial action plan that will describe what further remedial activities will occur in the future. As such, it appears to be nothing more than an administrative requirement as opposed to an actual remedial efficiency requirement.

NEXT STEPS

The Remediation Regulation came into force as of January 1, 2019, and all releases now must comply with its provisions. Releases reported before January 1, 2019 continue to be regulated in accordance with the old regime under the Remediation Certificate Regulation.

This article was first published on the Blakes Business Class website. It is republished with the permission of the authors and Blakes. Copyright of this article remains with Blakes.


About the Authors

Dufferin (Duff) Harper practices in the areas of environmental law, commercial litigation and regulatory law. He routinely acts for clients on environmental due diligence and liability issues, especially as they pertain to brownfield redevelopment and transportation of dangerous goods. On the corporate side, he specializes in crafting complicated environmental agreements that allocate environmental risks and address remediation requirements. He also advises clients on greenhouse gas matters including the purchase and sale of greenhouse gas emissions credits, offset credits and other environmental attributes.

Duff has acted as lead counsel in several litigation cases involving contaminated sites, both on behalf of contaminated property owners and parties who were allegedly responsible for the contamination. On the regulatory front, he has appeared before numerous levels of courts and assessment tribunals, including tribunals constituted pursuant to the Canadian Environmental Assessment Act (CEAA) ), the National Energy Board (NEB) and numerous provincial regulators.

Duff also provides strategic regulatory compliance and environmental impact assessment advice to industrial clients, such as conventional oil and gas companies, mining companies, companies operating in the oil sands, and liquefied natural gas proponents.

Lindsey Mosher’s practice focuses on energy regulation, as well as environmental and administrative law. She has experience in a broad range of regulatory matters, including regulatory compliance issues, regulatory approvals and hearings, and corporate matters.

Prior to joining Blakes, Lindsey obtained industry experience working in the legal department of a large Canadian oil and gas company, Alberta’s utilities regulator and a large Canadian telecommunications company.

Lindsey has appeared before Alberta’s utilities regulator, the Provincial Court of Alberta and the Court of Appeal of Alberta.

Canada’s draft 2019–2022 Federal Sustainable Development Strategy: Impacts on Clean Technology and Brownfield Development

The Government of Canada recently released the Draft 2019–2022 Federal Sustainable Development Strategy for public consultation and tabled the Government’s 2018 Progress Report of the 2016–2019 Federal Sustainable Development Strategy.

The draft Strategy sets out the Government of Canada’s environmental sustainability priorities, establishes goals and targets, and identifies actions that 42 departments and agencies across government will take to reduce greenhouse gas emissions from their operations and advance sustainable development across Canada.

Of interest to professionals in the environmental sector is some of the Government’s goals with respect to the greening of government. For example, the Government is aiming to reduce greenhouse gas emissions from federal government facilities and fleets by 40% by 2030 (with an aspiration to achieve this target by 2025) and 80% below 2005 levels by 2050. It also has the goal to divert at least 75% (by weight) of all non-hazardous operational waste (including plastic waste) by 2030, and divert at least 90% (by weight) of all construction and demolition waste (striving to achieve 100% by 2030), where supported by local infrastructure. The administrative fleet will be comprised of at least 80% zero-emission vehicles by 2030 according to the draft report.

With respect to real property, the proposed actions of the Canadian federal government include the following: (1) All new buildings and major building retrofits will prioritize low-carbon investments based on integrated design principles, and life-cycle and total cost-of-ownership assessments which incorporate shadow carbon pricing; (2) Minimize embodied carbon and the use of harmful materials in construction and renovation; and (3) Departments will adopt and deploy clean technologies and implement procedures to manage building operations and take advantage of programs to improve the environmental performance of their buildings.

For professionals involved in clean technology, the draft report calls for the implement of the Government’s pledge to double federal government investments in clean energy research, development and demonstration from 2015 levels of $387 million to $775 million by 2020.

The 2018 Progress Report shows how the Government of Canada is implementing the 2016–2019 Federal Sustainable Development Strategy, demonstrating that it is on track to meeting many of the commitments laid out in the Strategy. This includes highlighting the leadership role Canada has taken in working toward zero plastic waste and implementing measures to conserve marine areas, as well as actions on climate change.

With respect to clean technology, clean energy, and clean growth, the progress report touts the fact that through three consecutive federal budgets, the Government of Canada has made substantial investments in initiatives to support clean technology, clean energy and clean growth. These commitments include: (1) $2.3 billion in 2017 for clean technology and clean energy research, development, demonstration, adoption, commercialization and use; (2) $1.26 billion in Budget 2017 for the Strategic Innovation Fund; and (3) $4 billion in 2018 in Canada’s research and science infrastructure, much of which helps drive innovation towards a clean growth economy.

The draft Strategy updates the 2016–2019 Federal Sustainable Development Strategy, largely maintaining its aspirational goals while adding targets that reflect new initiatives, updating milestones with new priorities, and strengthening links to the 2030 Agenda for Sustainable Development. In all, 29 medium-term targets support the draft Strategy’s goals, along with 60 short-term milestones and clear action plans.

Among other results, the 2018 Progress Report shows that

  • from 2016 to 2017, greenhouse gas emissions from federal government operations were 28 per cent lower than in 2005 to 2006—more than halfway to the target to reduce emissions from federal buildings and fleets by 40 per cent of 2005 levels by 2030;
  • as of December 2017, close to 8 per cent of Canada’s coastal and marine areas were conserved; and
  • from 2017 to 2018, visits to national parks and marine conservation areas increased by 34 per cent above the 2010 to 2011 baseline levels.

Canadians have the opportunity to provide comments on the draft Strategy until early Spring 2019. For further information: Caroline Thériault, Press Secretary, Office of the Minister of Environment and Climate Change, 613-462-5473.

Clean-up of Potential CFL Stadium Site for Halifax Schooners

Shannon Park is located in Dartmouth, Nova Scotia, across the bay from Halifax. It is the the site of a former military housing complex. Environmental studies show that the site is contaminated with approximately 24,000 tonnes of soil containing arsenic and hydrocarbons.

The site has been empty since 2003. In 2014, it was purchased by Canada Lands Company, a federal crown corporation. In 2017, all buildings on the site were demolished.

In November 2018, the federal government issued tender documents for remediation of the site with the goal of it being cleaned up by the spring of 2019.

In December, it was announced that Dexter Construction Company Ltd. was recently awarded a contract to excavate, transport, and dispose of the contaminated soil from the Shannon Park site. They are also required to backfill the excavated area with clean fill as part of the contract. The value of contract is $900,933.

Dexter Construction, located in nearby Bedford, is the largest civil contractor in Nova Scotia with over 40 years of experience in infrastructure, mining, and the environment. Dexter Construction Company Limited is a subsidiary of Municipal Enterprises Limited and is the construction arm of the Municipal Group of Companies.

Previous environmental projects that Dexter Construction has been involved with include the Halifax Regional Municipality landfill development and the Halifax Harbour sewage treatment system construction.

With respect to the site being the home to a new stadium for the Halifax Schooners of the Canadian Football League, there is much to be done including the football team purchasing the land, raising $200 million to build the stadium, and getting approval for construction.

Plan for Football Stadium at Shannon Park, Dartmouth

Canadian NCC Awards Contracts for Environmental Site Assessment

The Canadian National Capital Commission recently award contracts to a number of environmental consulting firms to conduct environmental assessment of contaminated sites in Ottawa.  A number of firms were awarded contracts of $833,333 for providing contaminated site assessment services.  The firms were DST Consulting Engineers Inc., Geofirma Engineering Ltd., GHD Ltd., Golder Associates Ltd., SNC-Lavelin Inc., and Terrapex Environmental Ltd.

Under the contracts, the NCC may request as part of the purchase order process, but is not necessarily limited to the following consultant services under the resulting Agreements:

  • Provide environmental reports (either English or French);
  • Contaminated Site Identification and characterization associated with various sources of contamination;
  • Historical review of site activities, including consultation with municipal, provincial and federal regulatory agencies;
  • Field surveys;
  • Site investigations (sampling of contaminated or potentially contaminated media);
  • All parameters analyzed should be compared to both the Canadian Council of Ministers of the Environment (CCME) Federal Guidelines as well as the applicable provincial criteria;
  • Interpretation of laboratory analyses;
  • Contaminated area delineation for soil and groundwater, which includes coloured maps that clearly identify and illustrate the testing locations, the contaminants found, the dimensions of the contaminated volumes and the affected area;
  • Recommendations of further investigations, if required, with all the associated costs;
  • Provide guidance and expertise with Federal Regulation compliance;
  • Provide maintenance and repair services for existing monitoring infrastructure;
  • Evaluation of remediation technologies, which includes, identifying the different remediation options and the costs associated;
  • Evaluation of strategies to optimize recycling of material during remediation projects;
  • Completion of risk assessments (human health and ecological) under federal and provincial guidelines;
  • Provide Engineering Plans and Specification documents for remediation and construction projects (French & English);
  • Provide site surveillance during remediation and construction activities;
  • Provide project management and construction management services;
  • Provide landfill engineering and management services; and,
  • Provide long-term management strategies for complex contaminated sites.

The NCC has a number of development and rehabilitation projects underway in Ottawa including the redevelopment of LeBreton Flats, a property just west of Parliament Hill in Ottawa.  The property is contaminated from historical industrial activity and must be remediated before it can be redeveloped into a commercial and residential community.

In the past, the NCC spent $6.7 million to decontaminate the soil on a 5.7-hectare site. The process involved removing and remediating 110,000 cubic metres of soil.

With the current area awaiting remediation being just over three times that size at 21 hectares, RendezVous LeBreton, the development company that is partnering with the NCC to develop the site, has a considerably larger and undoubtedly more expensive amount of soil to remediate.

As of the Spring of 2018, the total cost of the soil decontamination at LeBreton Flats is undetermined at this time, but is estimated to be around $170 million, according to RendezVous LeBreton Group.

The empty land in LeBreton Flats awaits its redevelopment, but the soil that lies beneath its surface is in need of a cleanup, as well. Photo By: Meaghan Richens, Centretown News

 

Business Opportunities for Environmental Research and Development

The United States Department of Defense’s Strategic Environmental Research and Development Program (SERDP) is seeking environmental research and development proposals for funding beginning in FY 2020. Projects will be selected through a competitive process. The Core Solicitation provides funding opportunities for basic and applied research and advanced technology development. Core projects vary in cost and duration consistent with the scope of the work proposed.

The Statements of Need (SON) referenced by this solicitation request proposals related to the SERDP program areas of Environmental Restoration (ER), Munitions Response (MR), Resource Conservation and Resiliency (RC), and Weapons Systems and Platforms (WP).

The SERDP Exploratory Development (SEED) Solicitation provides funding opportunities for work that will investigate innovative environmental approaches that entail high technical risk or require supporting data to provide proof of concept.

Funding is limited to not more than $200,000 and projects are approximately one year in duration. This year, SERDP is requesting SEED proposals for the Munitions Response and Weapons Systems and Platforms program areas. All Core pre-proposals are due January 8, 2019. SEED proposals are due March 5, 2019. For more information and application instructions, see https://www.serdp-estcp.org/Funding-Opportunities/SERDP-Solicitations.

When Oil and Water Mix: Understanding the Environmental Impacts of Fracking

Dan Soeder, director of the Energy Resources Initiative  at the South Dakota School of Mines & Technology, has co-authored the cover article titled “When oil and water mix: Understanding the environmental impacts of shale development,” in the recent issue of GSA Today, a magazine published by the Geological Society of America.

The article explores what is known and not known about the environmental risks of fracking with the intent of fostering informed discussions within the geoscience community on the topic of hydraulic fracturing, says Soeder. Soeder’s co-author is Douglas B. Kent of the United States Geological Survey.

In this paper, Soeder and Kent bridge the gap in consensus regarding fracking, providing current information about the environmental impacts of shale development. The article is open access and adheres to science and policy, presenting a complicated and controversial topic in a manner more easily understood by the lay person.

“Geoscientists from dinosaur experts to the people studying the surface of Mars are often asked by the public to weigh-in with their opinions on fracking. We wanted the broader geoscience community to be aware of what is known and not known about the impacts of this technology on air, water, ecosystems and human health.  A great deal has been learned in the past decade, but there are still critical unknowns where we don’t yet have answers,” Soeder says.

Development of shale gas and tight oil, or unconventional oil and gas (UOG), has dramatically increased domestic energy production in the United States and Canada.  UOG resources are typically developed through the use of hydraulic fracturing, which creates high-permeability flow paths into large volumes of tight rocks to provide a means for hydrocarbons to move to a wellbore. This process uses significant volumes of water, sand, and chemicals, raising concerns about risks to the environment and to human health.

In the article, Soeder and Kent address the various potential impacts of fracking and how those impacts are being addressed.  Risks to air include releases of methane, carbon dioxide, volatile organic compounds, and particulate matter. Water-resource risks include excessive withdrawals, stray gas in drinking-water aquifers, and surface spills of fluids or chemicals. Landscapes can be significantly altered by the infrastructure installed to support large drilling platforms and associated equipment. Exposure routes, fate and transport, and toxicology of chemicals used in the hydraulic fracturing process are poorly understood, as are the potential effects on terrestrial and aquatic ecosystems and human health.

Schematic diagram illustrating unconventional oil and gas (UOG) development activities relevant to research on human-health and environmental impacts (not to scale): well-pad construction (1); drilling (2); completion/stimulation (3, 4); production of natural gas (5) and oil (6) with well casings designed to protect drinking-water aquifers; ultimate closure (plug and abandon), illustrating legacy well with leaking casing (7); wastewater disposal (8); induced seismicity (9); landscape disturbance (10); and potential for transport pathways from deep to shallow formations (11). Also represented are water supply wells in shallow and deep aquifers (12). Photographs by Dan Soeder.

 

Did the City of Hamilton overpay for a Brownfield Site

As reported by the CBC, the City of Hamilton recently paid $1.75 million for a brownfield site that once sold for $2.  The property, located at 350 Wenworth Street North, sold for $2 a decade ago and then for $266,000 two years ago.

In the property was purchased in 2013 for $266,000, hundreds of barrels of toxic waste were discovered behind a fake wall.  The barrels contained coal tar byproducts and industrial solvents, and roof tar.  The new owner arranged for the proper disposal of the barrels.  The Ontario Environment Ministry confirmed  in  an e-mail to CBC that the waste had been from the building and it was decontaminated by the fall of 2017.  It also confirmed that the clean-up included the removal of approximately 200,000 litres of liquid waste.

The cleanup of the toxic property has been going on intermittently since 2010 (Photo Credit: Hamilton Spectator) photo

It is not known how much the clean-up of the 800 barrels of toxic waste cost, but the Hamilton Spectator quoted the owner  in 2017 that the clean-up would cost $650,000.

Property records for the building stretch all the way back to 1988, when Currie Products Limited spent a million dollars for 350 Wentworth. Currie ran a tar facility that went out of business there in the late 1990s, and was considered by many to be the company that originally polluted the site. Owner John Currie died in 2013.

Through the years, the building has changed hands multiple times for a wide swath of prices, ranging from that original million dollars, to $610,000 in 2007, to $2 in 2008, to the tax sale in 2016 and now, for $1.75 million. Over that time, building owners fought with each other and the province over who was actually responsible for cleaning up the site, in some cases heading to court in search of a resolution. For each sale, the price of the property reflected what buyers knew about the site at the time.

The city’s purchase of the property is all part of a reshuffling of buildings in the area to create a transit hub for the lower city like the Mountain Transit Centre at 2200 Upper James.

While it appears the city could have saved money by taking over the property when it was up for tax sale, that’s not really the case, officials say. The city does sometimes take carriage of properties after a failed tax sale, but woudn’t do so on a property like this one with environmental issues, Hamilton City Councillor Matthew Green told the CBC.  He added, “The city won’t take on the liability by policy.  The liability is way too big, because you don’t know what you’re buying … you have no idea what could be found or buried.”

The city bought 350 Wentworth St. N., which has required much cleanup over the years. Most recently, 200,000 litres of liquid waste was removed from the site in 2017 (Credit: The Hamilton Spectator)

 

 

 

Ontario construction groups launch video series on excess soil management

In southern Ontario, the management and use of excess soil is a growing issue.  There has long been concerns of unscrupulous players wrongly classifying contaminated soil as excess soil and managing it incorrectly.  Likewise, there has been long-standing concerns expressed by those wanting to do the right thing of ambiguous and uncertain rules with respect to determining what is excess soil and how to manage it.  As a result, honest industry participants end up hauling excess soil to landfill that could have otherwise been utilized for useful purposes.

According to data compiled by the the Residential and Civil Construction Alliance of Ontario (RCCAO), Ontario’s  construction market generates almost 26 million cubic metres of excess construction soil every year.  About $2 billion is spent annually to manage excess soil – which comes from civil infrastructure projects such as transit, roads, bridges, sewers, watermains and other utilities.  Even though most municipal roadways contain only minor amounts of salt from winter road treatment, large quantities of soil are often hauled up to 100 kilometres away to designated dump sites, rather than being reused on site or at other nearby construction sites.

“Clean excess soil can be more responsibly managed through better upfront planning,” says Andy Manahan, executive director of the Residential and Civil Construction Alliance of Ontario (RCCAO). “That’s why we co-produced a three-part video series to increase awareness that there are alternatives to the ‘dig, haul long distances and dump’ approach.”

RCCAO teamed up with the Greater Toronto Sewer and Watermain Contractors Association (GTSWCA) to produce this video series to inform the public, government and industry on the benefits of using best management practices. It’s called “The Real Dirt on Dirt: Solutions for Construction Soil Management.”

There are a lot of trucks on the road travelling 60 to 100 kilometres to dump excess soil as a waste material – and that is completely wrong, says Giovanni Cautillo, executive director of GTSWCA.

“It’s not a waste – it’s a reusable resource,” Cautillo says. “When municipalities provide guidance to contractors about where soil from local infrastructure projects can be reused, the costs of handling and disposing of soil can be dramatically reduced. Wherever possible, soil should be reused onsite, but if this is not possible, having an approved reuse site within a close distance saves taxpayers money.”

When best management practices are used, there are fewer trucks travelling long distances, causing less wear and tear to the roads – and less traffic congestion. Fewer trucks on the road reduces greenhouse gas emissions, creating a cleaner, healthier environment.

The Ministry of the Environment, Conservation and Parks (MECP) is currently reviewing draft regulations to help improve ways to manage soil on building and infrastructure projects across the province. Manahan says that “a multi-ministry approach – environment, municipal affairs, transportation, infrastructure and others – will also help to achieve a more coordinated effort.”

Insight into the Hazardous Waste Management Industry – A Profile of Clean Harbors Facilities

by David Nguyen – Staff Writer

Clean Harbors is a hazardous waste management company operating across North America. Their location in Mississauga is a hazardous waste terminal and transfer station, receiving, handling, and transporting flammable solids destined to the U.S. for incineration.  Non-flammable solids and liquid hazardous waste is sent to their facility in Lambton, Ontario.  The Lambton facility includes a hazardous waste landfill and a liquid hazardous waste incinerator.

Clean Harbors coordinates hazardous waste management solutions across the Canada-U.S. border.  It is makes business sense for the company to transport flammable solids that are hazardous to its U.S. incinerator instead of having a facility in Canada.  “Liquid injection incinerators are a lot cheaper,” says Mike Parker, Vice President, Canadian Environmental Compliance. “There really isn’t a strong enough market to support [hazardous solid incineration] in Canada.”

Mississauga Site Activities

Carriers bring the hazardous waste to the transfer station, where the manifests and documentation are reviewed to ensure that the facility is permitted to receive the material. Receiving times are typically planned ahead of time to prevent surges of shipments on site. Once off loaded, the waste is sampled to confirm the material profile noted in the manifest and then staged for further processing. The entire staging area is built over sealed drains leading to a blind sump to prevent any spills from leaving the site. “All the liquids from our sumps, even if it’s just rain water… get put into tanks and go down for incineration,” says Parker.

Every drum the facility receives has its contents verified, sampled, and tested. Samples are analyzed for PCBs, pH, ignitability/ flashpoint, sulfide, chloride, oxidation, cyanide, and water reactivity in order to get a profile for the waste, after which a code is attached to the drum to indicate its destination and disposal.

Staging Area (photo by David Nguyen)

This information is stored in their management system that tracks the inventory at their various facilities, including the shipping information and profiles of all items. The information is removed for approval to be received on site. The system also tracks the manifests for the generator, carrier, receiver, and the ministry, internal inspections, and monthly reports to be sent to the ministry.

After sorting and sampling, the waste is safely sorted into various streams for consolidation, bulking, or blending.

“It has to be in the same waste class to mix and match. We can’t mix something flammable with something non-flammable,” says Parker.

“Even if they are in the same waste class, we take samples from each drum, mix it together, and if nothing happens, we can do it” says Erica Carabott, Facility Compliance Manager.

Liquid waste is bulked in tank farms until there is enough to fill a taker truck to be sent to Lambton for incineration. Solid waste is loaded into pits where the material is shredded up, bulked, and mixed with a solidifying agent to take up any free liquids in the solid waste streams.

Lambton Facility Activities 

Many of the materials received at the Mississauga Transfer station are transported to the Clean Harbors Lambton facility offers services including waste neutralization, incineration of hazardous waste, inorganic pre-treatment of hazardous waste, thermal desorption of solid and sludge, and landfill disposal of hazardous waste.

Liquid waste is blended in a controlled neutralization process at the acid and alkali plant before being fed to the incinerator. The liquid waste injection incinerator operates 24 hours a day, 7 days a week, consisting of a fix unit incinerator, a semi-dry spray dryer absorber, and a four-compartment baghouse. The site capacity is about 100 000 tonnes per year and can process pumpable material that does not contain PCBs, pathogens, radioactives, and cylinders.

Lambton Incinerator (Photo Credit: Clean Harbors)

The landfill is situated in natural clay, and accepts a variety of hazardous waste excluding explosives, PCBs, radioactive, pathological wastes, or compressed gasses. Due to the Land Disposal Restriction prohibiting the disposal of untreated hazardous waste on land, Clean Harbors has an inorganic solid pre-treatment processing plant which mixes inorganic waste (primarily metal bearing solids) with reagents to prevent the metals from becoming leachable.

Furthermore, a thermal desorption unit is used to condense and recover water and organics from organic solid waste. The waste is fed into a kiln that heats the waste to 400-450 degrees Celsius to strip the organics from the waste. The vapours are condensed to remove liquid organics during the process, with the remaining emissions vented to the incinerator. The residual solids are then tested for any remaining organics or metals, and then disposed of in the hazardous landfill on site.

“You can understand why it takes a lot of money to treat the stuff in the landfill. It cooks it for about a half hour – that’s a lot of heat and a lot of money” says Parker. “With testing at the front and testing at the end,” adds Carabott .

Clean Harbor’s Lambton Hazardous Waste Landfill (Courtesy: Clean Harbors)

These facilities and processes allow Clean Harbors to work with their clients to develop cost effective solutions to handling and disposing of hazardous waste materials throughout the Great Lakes Basin in both Canada and the United States. In addition, Clean Harbors conducts regular outreach programs with the local community regarding the safe operations and reporting conducted at the Lambton facility.

Special thanks to Mike Parker and Erica Carabott for taking the time to speak with me and show me around the Mississauga Transfer station.

Contaminated Site Clean-up Opportunities in China

As reported by the South China Morning Post, China’s government recently approved a new plan to tackle growing pollution threats in its countryside, and will strive to clean up contaminated rural land and drinking water and improve waste management.

The new plan, approved “in principle” by the Ministry of Ecology and Environment is the summer also mandates cuts in fertilizer and pesticide use and improved recycling rates throughout the countryside.

Industrial pollution of land in China. The authorities have been reluctant to divulge details of the localised scale of the problem (Image by JungleNews)

China is in the fifth year of a “war on pollution” designed to reverse the damage done by decades of tremendous economic growth, but it has so far focused primarily on air quality along the industrialized eastern coast, especially around the capital Beijing.

China’s countryside has struggled to cope with land and water pollution caused not only by unsustainable farming practices, but also by poorly regulated, privately-owned mines and manufacturing plants, as well as rising volumes of plastic waste.

Rehabilitating contaminated land has become a matter of urgency for the Chinese government, which is under pressure to maximize food production while at the same time it is setting aside one-quarter of the country’s land as off-limits to development by 2020.

Total arable land declined for a fourth consecutive year in 2017 as a result of new construction and tougher environmental requirements, the government said in May.

The State Council published a plan in February to deal with growing volumes of untreated rubbish dumped in the countryside, promising to mobilise public and private funds to make “noticeable improvements” to the living environment of rural regions by 2020.

It vowed to restore wetlands, plant trees and eliminate “disorderly” rural construction to improve the appearance of China’s villages, and would also focus on improving garbage and sewage treatment.

In August, the Chinese government enacted the Soil Pollution Prevention and Control Law.  This is the first time China has enacted a law targeting soil pollution.  For existing soil pollution, the law holds polluters and users (as it is rare in China for individuals to own land) accountable for a series of risk management and remediation obligations, with the polluters being primarily responsible.

According to an article by IISD, the estimated cost for remediation efforts between 2016 and 2020 at $1.3 trillion (USD). The government itself estimates it might be able to cover only a small fraction of the overall cost.  During China’s the 12th Five-year Plan (2011–2015), only $4.5 billion) was allocated to soil remediation, mainly for urban areas.

Combine polluter payments with government support and a prohibitive capital gap still exists in China’s efforts to restore land and protect public health. This gap will have to be filled by private sources.