Keystone Pipeline Spill Response deemed a Success

In early December, a section of the Keystone Pipeline leaked 210,000 gallons of oil near the South Dakota City of Amherst.  Representatives of Trans-Canada Pipeline, the owner of the pipeline, deemed the detection of the leak and prompt spill response as an example of its exemplary contingency measures that are in place to detect and respond to such incidents.

An aerial view shows the darkened ground of an oil spill which shut down the Keystone pipeline between Canada and the United States, located in an agricultural area near Amherst, South Dakota.
REUTERS/Dronebase

When fully complete, the Keystone Pipeline will carry bitumen from the Alberta oil fields to refineries in Texas.  At present, the pipeline runs from Alberta, through North Dakota and South Dakota.

As reported in the Prairie Public News, Julie Fedorchak of the North Dakota Public Service Commission (PSC) stated that the company’s quick response to the incident shows that its response plan worked perfectly.

“The system was shut down within three minutes,” Fedorchak said.  “And importantly, the spill was detected.”

Fedorchak said the spill showed up on its detection equipment, and the people overseeing system noticed it, and.

“They knew it was something off,” Fedorchak said.  “And the quick shutdown prevented what could have been a much more difficult spill.”

But Fedorchak said there are still questions about why the spill happened.

“It’s a new line,” Fedorchak said. “New lines like this shouldn’t be having those kinds of issues.”

Fedorchak said it’s important that the company and federal pipeline regulators do the tests needed on that pipeline, to try to figure out what caused it.

“That’ll be a learning opportunity for the entire industry,” Fedorchak said.

The company believes it may have been caused by an abrasion on the pipeline coating, that happened during construction.

“Perhaps there were some things in the ground that could have caused it,” Fedorchak said. “Or it could have been a problem with the pipeline protection itself. They’re looking at a number of things.”

Clean-up work continues at the spill site.

Spill Response Questioned for Pipeline underneath the Great Lakes

As reported in the Maritime Executive, Canadian pipeline operator Enbridge is engaged in a debate with environmental groups over the operation of an underwater pipeline that runs beneath the Straits of Mackinac, the narrow waterway between upper and lower Michigan.

Last month, Enbridge reached an agreement with Michigan state government that allows it to continue operating the line, except during weather conditions that would interfere with a spill response.  The agreement defined poor weather as wave heights over eight feet.  In return, Enbridge promised to study the possibility of replacing the line – which sits above the surface of the lakebed – with a pipe buried in a tunnel.  The firm said that it would also look at measures to reduce the risk of damage to the current pipeline from boat anchors.

Red lines show where Line 5 crosses Straits of Mackinac (Source: Enbridge)

Recently, Michigan’s Pipeline Safety Advisory Board called for the Governor of Michigan to shut down the line until repairs are made to areas where the exterior protective coating is missing.  It also requested that State Government’s deal with Enbridge be revised to allow pipeline operations only when waves are three feet high or under.

Local environmental advocates contend that these measures do not go far enough.  These ativists say that the board and the governor did not take into account a prominent feature of wintertime navigation on the Straits of Mackinac: ice.  The Coast Guard is the only entity in the region with icebreakers, and its vessels are usually busy ensuring the safety of navigation during the wintertime.  In the event of a spill, the service says, the nearest icebreaker could be up to two days away.

In congressional testimony last month, Coast Guard Commandant Adm. Paul Zukunft said bluntly that his service is not prepared to handle the worst-case scenario for pipelines like Line Five. “I will go on the record and say that the Coast Guard is not Semper Paratus [always ready] for a major pipeline oil spill in the Lakes,” he said.

Enbridge says that Line Five’s dual 20-inch pipelines remain in excellent condition and have never experienced a leak in their 60 years of operation. The line is used to transport natural gas liquids, light crude oil and light synthetic crude, and it supplies most of Michigan’s propane.

“We’re committed to the letter and spirit of this important agreement [with the governor], and to the options outlined in the agreement that move us to a longer-term set of decisions about the future of Line Five,” said Enbridge spokesman Guy Jarvis, speaking to Michigan Public Radio.

 

Nearly $3 million awarded for R&D of Marine Oil Spill Response Technology by Canadian Federal Government

The Canadian federal government recently announced investments of $2.89 million for four projects to enhance marine incident prevention and responsiveness along Canada’s ocean coastlines.

Centre for Cold Ocean Resources Engineering (C-CORE)

Through its Oil Spill Response Science (OSRS) program, the federal government provided $991,500 to C-CORE, a St. John’s-based research and development company, to increase the efficiency of existing mechanical oil recovery systems for heavy oil products in harsh, cold environments.  The government of Newfoundland and Labrador will also provide $428,500 to the project.

“This project leverages C-CORE’s expertise in analytical modelling, computer simulation and large-scale physical tests to assess and optimize technology performance in harsh environments,” Mark MacLeod, C-CORE president and chief executive officer, said in a statement.

Lab-scale test apparatus for oil recovery

The main intermediate outcome of this project consists of an improved oil spill collection and separation system that can be integrated in an efficient response technique including a specially designed vessel.  The system will be based on the established concepts and proven technologies for recovery of heavy oil spills from sea water in cold and ice prone ocean environments.

The long-term outcome of the project will include specialized vessels with the required detection, storage, and spill removal systems, tested and proven in the real life conditions.

Project partners with C-CORE include Elastec, Eastern Canada Response Corporation Ltd. (ECRC), and InnovatechNL.

University of Toronto

A further $400,000 will go to a University of Toronto project that will develop a sorbent-based direct oil collector (called In-Situ Foam Filtration System or ISFFS) for use in oil spills.  This system will be capable of directly reclaiming the dissolved, emulsified, dispersed, and free oil from marine spill sites.  To meet this objective, the development of advanced functional foams (sorbents), implementing a bench-top system, and design and optimization of in-situ filtration process as a proof-of-concept will be undertaken.

The ISFF will directly collect the oil from the spill site by pumping through oil sorbent bed, which serves as the filtration media.  For this type of foam, there is no need for high oil-sorption capacity thus, functionalizing the foam with toxic and expensive elements can be avoided along with minimizing material costs.  Moreover, the in-situ filtration will make the oil sorption process continuous, simplifies oil collection, making oil spill response quicker and more cost effective.

Project partners include Tetra Tech, Polaris Applied Sciences Inc., Dr. Foam Canada, Gracious Living Innovations Inc., and ShawCor Ltd.

University of Alberta’s Advanced Water Research Lab

The OSRS program will be contributing $600,000 towards a $1.65 million project be undertaken at the University of Alberta.  The project involves the development of an on-board membrane based hybrid oil/water separation system.  If successfully developed, the system will significantly increase the capacity of recovery vessels that physically collect oil spilled at sea, thereby reducing the cost and spill response time for cleanup.  The technology can be directly and easily incorporated into existing rapid deployment spill clean-up systems mounted on ships or barges.  It would be ready to commercialize for manufacturers of existing oil spill clean-up tankers, making the research easy to implement for large or small-scale spills and for potential use in future high-risk areas of development.

BC Research Inc.

Finally, the federal OSRS program committed $925,000 to BC Research Inc., a company with a broad experience in chemical product development, to further develop a hybrid spill-treating agent (STA) that will help slow or prevent the spread of an oil slick on water.

If the R&D project is successful, a hybrid STA will be commercially available that can be used to combat marine oil spills at large scale.  The hybrid STA would have both gelling and herding properties, to prevent or slow down the spreading of an oil slick by rendering it into a thickened (gelled) state, as well as to use it as a herding agent, to facilitate either controlled burn or skimming operations.

Current oil recovery rates for spills on water are estimated to be in the range of 10-20%.  With current STAs, there are few options to prevent or slow down weathering processes, including spreading and dispersion. Delaying the spreading and weathering process would potentially facilitate cleanup and improve the degree/rate of oil removed.

Project partners include NORAM Engineers and Constructors and the University of British Columbia.

Volunteers cleaning Ambleside Beach in West Vancouver, 1973. (Source: John Denniston)

Innovations in Pipeline Design: Leak-proof technology

By Dema Mamon, M.Sc.Pl, BES and John Nicholson, M.Sc., P.Eng.

In Canada, getting approval to construct an oil pipeline has become increasingly difficult.  Every oil pipeline incident that involves a leak and subsequent clean-up is widely covered in the media,  providing fuel for pipeline opponents that call an end to the construction of new pipelines.

Abacus Data Inc., an Ottawa-based research firm, has been tracking public opinion on the construction of new pipeline capacity and has found some interesting trends.  Since 2014, polling has shown that the negative view of building new oil pipelines has remained steady at 21 to 22% range.  However, there was a drop in the positive attitude amongst Canadians toward building new pipelines – from 58% in 2014 to 44% in 2017.  Over that three year span, a good proportion of Canadians who once viewed building new pipeline capacity with a positive attitude have shifted to a neutral view.  The neutral view on oil pipelines have grown from 20% in 2014 to 36% in 2017.

There can be many theories to explain the three year shift in public opinion on new oil pipelines.  One plausible theory is that oil spills from pipelines typically make headline news, thus leaving an impression in the minds of Canadians the perhaps pipelines are not as safe as the industry states.  Oil leaks from pipelines damage the environment, are costly to clean-up, and fuel public opinion that pipelines are not safe.

One way to eliminate the perception that building new oil pipelines is bad for the environment and shift public opinion in favour of such projects is to build pipelines that don’t leak.  However, is it even possible to build leak-proof pipelines?

Are Double-Walled Pipelines the Answer?

One logical idea for building leak-proof pipelines is for them to be double-walled.  The outer wall would serve as protection from external damage.  The technology does exist to construct double-walled pipelines and they are used in certain circumstances such as when there is a large temperature difference between the liquid in the pipe and the surrounding environment.

Double-walled pipelines are not considered the cure-all by some in the industry.  Those resistant to the use of double-walled pipelines note that in some instances, it may be more cost effective to protect pipelines from the potential of external damage by burying them or placing slabs over them in higher risk areas.  Furthermore, it can be more difficult to monitor a double-walled pipeline and an outer pipe interferes with the maintenance of the inner pipe.

At the University of Calgary, researchers believe their two-walled pipeline design and monitoring system is the solution to preventing spills.  Although double-walled pipelines have been around since the 1980’s, Thiago Valentin de Oliveira, an electrical and computer-engineering master’s student, and Martin Mintchev, an engineering professor, say that their design is superior.

The U of Calgary researchers designed and constructed their prototype to consist of a typical steel inner layer with either a steel or plastic outer layer.  There is an air gap between inner and outer pipeline contains the oil that leaks from the inner pipeline leak.  The real innovation developed by the U of Calgary is the segmentation of the inter-pipe space and the inclusion of a linear wireless network linking the segments.  With the segmentation, a leak of oil from the inner pipe enters the air gap between the two pipes and is contained in a section of pipe.  Wireless pressure sensors between the two walled layers detect the pressure build up and send an alert to the pipeline control staff.

 

If commercially implemented, the U of Calgary system would allow pipeline operators with the means of quickly shutting down the pipeline when a leak was detected into the outer pipeline and crews could be dispatched to make repairs.  The oil that leaked from the inner pipe would be contained in the air gap between the two pipes and be confined to one section of the pipeline.

The U of Calgary researchers estimate that their design would result in an additional 25% in the capital cost of building pipelines.  They believe this cost could be reduced if the outer pipeline material was composite materials or plastic.

Is Advanced Monitoring the Solution?

Also in Alberta, a Calgary-based firm, HiFi Engineering, recently announced that it has developed an innovative pipeline leak detection system.  Dubbed High-Fidelity Dynamic Sensing (HDS™), the monitoring system can spot the exact location of a leak in a pipeline within seconds of it occurring.  The system continuously monitors temperature, sonic and ultrasonic acoustics, and vibration and strain.  Any anomaly in the measurements results in an alert being sent to the pipeline company control room.

Hifi Engineering’s High Fidelity Dynamic Sensing (HDS) technology is being called the ‘ears of pipeline monitoring.’

The system works utilizing fiber optic cables that run the length of the pipeline.  A laser beam is sent down the length of the optic cable and sends signals back that provide a multitude of information to the pipeline control room.

TransCanada Pipelines Corporation has already installed the HiFi HDS™ monitoring system in sections of the Keystone XL oil pipeline that runs from Canada to the U.S.  Also, Enbridge employs the technology in its new northern Alberta pipeline.

_____________________

About the Authors

Dema is a graduate of York University’s Bachelor in Environmental Studies program (2008) and the University of Toronto’s Masters of Science in Planning Programme (2010). She is currently pursuing her Canada Green Building Council’s Leadership in Energy and Environmental Design’s Green Associate certification. Her research interests include environmental conservation, green infrastructure, and sustainability. She can be reached at dema.mamon@gmail.com.

John Nicholson is the editor of Hazmat Management Magazine.  He has over 25 years of experience in the environmental and cleantech sectors.  He is a registered professional engineer in the Province of Ontario and has a M.Sc. in environmental engineering.  His professional experience includes time at a large engineering consulting firm, a major Canadian law firm, and the Ontario Ministry of the Environment and Climate Change.

B.C. First Nation says it has created world-class oil spill response plan

As reported by CTV News, A British Columbia First Nation has released a plan it says will give it a leading role in oil spill prevention and response on the province’s central coast.

A report from the Heiltsuk Nation calls for the creation of an Indigenous Marine Response Centre capable of responding within five hours along a 350 kilometre stretch of the coast.

The centre proposal follows what the report calls the “inadequate, slow and unsafe” response to the October 2016 grounding of the tug the Nathan E. Stewart that spilled about 110,000 litres of diesel and other contaminants.

Bella Bella Oil Spill (Photo Credit: HEILTSUK FIRST NATION)

Heiltsuk Chief Councillor Marilyn Slett says during that disaster her people saw what senior governments had described as world-class spill response and she says the Heiltsuk promised themselves that this would never happen in their territory again.

The report says the proposed centre, on Denny Island across from Bella Bella, and satellite operations dotted along the central coast, would need a total investment of $111.5 million to be operational by next summer.

Unlike current response programs which the report says are limited specifically to spills, the new centre would answer all marine calls with the potential for oil contamination, including groundings, fires, bottom contacts and capsizings.

“(The centre’s) effectiveness hinges on a fleet of fast response vessels capable of oil clean up and containment, and a tug and barge system providing storage and additional oil spill clean-up capabilities,” the report says.

The barge would also be equipped with enough safety gear, provisions and living space to allow a response team to remain on site for up to three weeks without outside support.

The marine response centre would have annual operating costs of $6.8 million, covering a full-time staff and crew of 37.

“From Ahousaht with the Leviathan II to Gitga’at with the Queen of the North to Heiltsuk with the Nathan E. Stewart, Indigenous communities have shown that we are and will continue to be the first responders to marine incidents in our waters,” says the report, signed by Slett and hereditary Chief Harvey Humchitt.

Indigenous rescuers were first on the scene when six people died after the whale-watching vessel the Leviathan II capsized north of Tofino in 2015. Two people were killed when the Queen of the North hit an island and sank in 2006 west of Hartley Bay and First Nations helped in the rescue.

“The time has come to meaningfully develop our capacity to properly address emergencies in our territories as they arise,” the report says.

Class Action suit filed against CN Rail for derailment

As reported in the Sudbury Star, a Timmins law firm has sent a letter out to Gogama area residents and cottagers advising that a class-action lawsuit has been filed against CN Rail in connection with the derailment of an oil tanker train and subsequent oil spill that occurred on March 7, 2015.

The letter, signed by James Wallbridge of Wallbridge, Wallbridge Trial Lawyers of Timmins, was to advise residents to sign retainer agreements or to indicate whether or not they wish the law firm to proceed on their behalf.

The derailment and oil spill occurred in the area of the Makami River bridge, on the CN mainline near the village of Gogama, a town in Northeastern Ontario located between Timmins and Sudbury.  An eastbound CN Rail train hauling 94 tank cars had a derailment after riding over a broken rail. In all, 39 tank cars left the track.  Some of the cars fell into the river next to be bridge, exploded and burst into flame. Several of the cars were breached releasing many hundreds of thousands of litres of synthetic crude oil into the river and the surrounding environment.

Gogama train derailment

Wallbridge’s letter said the claim against CN Rail was filed back in July and that there are indications that the clean-up of the oil spill in the area is not properly done yet.

“We are advised by Fred Stanley of Walters Forensic Engineering that the cleanup continues notwithstanding CN and the Ministry of the Environment’s view the oil spill cleanup is complete,” said the letter.

Wallbridge went on to suggest that more environmental testing would be needed early next year.

“We are of the view that next spring may be an appropriate time to review the work that has been done and undertake independent testing. We have spoken to the Ministry of Environment’s legal counsel about testing and have indicated that we anticipate their cooperation in reviewing the overall cleanup.”

Wallbridge also advised that his firm has indicated that the timetable for the class action should be “held in abeyance” pending a review of the cleanup in May and June of 2018.

He said his firm elected to proceed by class action to preserve the limitation period of two years from the date of the occurrence. The class action serves to suspend the limitation period during the certification process, the letter said.

The Gogama-Makami River derailment was the second CN oil train derailment in that area in the winter of 2015. Both occurred along the section of the CN mainline known as the Ruel Subdivision. Another train hauling tank cars had derailed three weeks previous, on Feb. 14, 2015, in a remote bush and wetlands area, about 35 kilometres north of Gogama.

Canada’s Transportation Safety Board filed a report in August saying that a broken section of rail was the cause of the derailment at the Makami River bridge.

Advance Technology Camera spots hidden Oil Spills

As reported in the New Scientist, a new kind of polarising camera is available that can detect otherwise invisible oil sheens.

Like many oil imagers, the Pyxis camera sees the infrared radiation emitted by all objects.  That is important because there is often a temperature difference between oil and water.  However, if there isn’t one, thermal imagers don’t work.  So the Pyxis also detects differences between the way oil and water scatter light.  Thanks to this differing polarisation, it works not only when the oil and water are the same temperature – but also in pitch darkness.

Infrared polarimetry has been used in astronomy to help identify distant stellar objects. Polaris Sensor Technologies, based in Alabama, has modified the technology for a new use.

“The optical system and the physics behind it are very complex,” says David Chenault, President of Polaris Sensor Technologies.  “We started building infrared polarimeters several decades ago, but they were bulky and not capable of looking at dynamic scenes.” Only in the past few years did it become possible to significantly shrink the sensor – now roughly the size of a fist – and make it capable of imaging moving scenes. That is important for detecting oil on water.

The new camera can see spills invisible to the naked eye from 2 kilometres away.  Its size means it can be mounted on a small drone or other robot.

Doug Helton of the National Oceanic and Atmospheric Administration Emergency Response Division says these cameras could augment NOAA satellite networks, which detect and track suspected oil spills.  While they can spot even small spills, visual confirmation is crucial to rule out false positives. “Wind shadow may look like an oil slick,” he says.

Confirmation is usually done by people in a helicopter or plane, so that is where a drone-mounted camera could save a lot of time.

The camera can also spot and track oil washed up on beaches. Typically, this is a time-consuming task that must be done by people on the ground.

The sensor passed extensive tests with crude oil and diesel in different wave conditions at the massive Ohmsett test facility pool in New Jersey and at an actual spill off Santa Barbara, California, in 2015.  Russell Chipman at the University of Arizona says this is a significant development. “The costs of polarimeters are decreasing,” he says, and the miniaturisation and commercialisation of infrared polarimetric sensors means this technology can now be deployed widely to detect all kinds of oil slicks.

While Polaris is currently concentrating on oil detection, more applications for the camera are likely to be discovered when it goes into mass production, anticipated early next year.

 

When Is a Discharge to Groundwater Subject to the U.S. Clean Water Act? Can You Say “Significant Nexus”?

By Seth Jaffe, Foley Hoag LLP

Whether the United States Clean Water Act regulates discharges to groundwater has been a topic of significant debate.  At this point, there seems to be something of a trend in the cases towards concluding it does, but it remains true that all of the courts of appeal that have addressed the issue have concluded that it does not.  As I have noted, the problem with the “yes” answer is that pretty much all groundwater eventually discharges to surface water, making all such discharges subject to the CWA.  How can that be, given that groundwater is not considered to be “waters of the United States?”

Chief Judge Waverly Crenshaw recently addressed the issue in Tennessee Clean Water Network v. TVA.  Judge Crenshaw’s solution was creative – meaning he pretty much made up out of whole cloth.  That doesn’t necessarily mean that it’s wrong, however.

The case involves coal ash management at the TVA’s Gallatin plant.  Some of the – unlined – ponds directly abut the Cumberland River.  The plaintiff citizen groups brought claims under the CWA, alleging that TVA was discharging pollutants to the River – via groundwater – without an NPDES permit.  They requested an injunction requiring that the TVA remove the coal ash from the ponds, at a cost of $2 billion.

Gallatin power plant, operated by the Tennessee Valley Authority in mid-Tennessee on the north bank of the Cumberland River. Location of the main coal-burning facility is indicated by the icon and label.

Judge Crenshaw was clearly frustrated by an absolutist position on either side.  Clearly, he does not think that any link between groundwater and surface water, no matter how attenuated, can be enough for jurisdiction to attach.  On the other hand, he was also trying to reckon with the specific case in front of him.  As he saw it, the Gallatin ash ponds were a complete environmental mess.  They immediately abut the Cumberland River, clearly a water of the United States.  Can the outcome really be different if the ponds discharge directly to the River than if they discharge to groundwater 10 feet from the River, where that groundwater then discharges to the river?

His solution?

the Court concludes that a cause of action based on an unauthorized point source discharge may be brought under the CWA based on discharges through groundwater, if the hydrologic connection between the source of the pollutants and navigable waters is direct, immediate, and can generally be traced.

I confess I like this solution, because it is practical and will generally yield reasonable results.  It avoids either effectively regulating all groundwater under the CWA or having to conclude that the CWA can’t reach situations such as the Gallatin ash ponds.

The problem?

There’s no textual support for this solution in the CWA.  To me, this test sounds a lot like Justice Kennedy’s “significant nexus in Rapanos.  There too, his position received a lot of support at a practical level, while many commentators noticed that the CWA says nothing about a “significant nexus.”

We all know how well that’s worked out.

This article was first published in Law and the Environment, a blog from Foley Hoag LLP.

______

About the Authors

Seth D. Jaffe

A partner at Foley Hoag, Seth Jaffe is recognized by Chambers USA, The Best Lawyers in America and Massachusetts SuperLawyers as a leading… MORE

Kathleen Brill

Kathleen Brill is an Associate practicing in the Administrative Department of Foley Hoag’s Boston office. Before joining Foley Hoag, Kathleen had considerable experience…MORE

 

New spill rules tag transport companies with response, recovery costs in B.C.

As reported by Dirk Meissner of the Canadian Press, the Government of British Columbia has introduced pollution prevention regulations to hold transport companies moving petroleum products across the province responsible for the costs of responding to and cleaning up spills.

Environment Minister George Heyman said recently that the new regulations will take affect at the end of October and apply to pipeline, railway and truck company owners and transporters moving more than 10,000 litres of liquid petroleum products.

The rules increase responsibility, transparency and accountability for operators who transport potentially dangerous products through B.C., he said.

“I would hope that business doesn’t believe that individual members of the public through their tax dollars should be responsible for cleaning up spills they incur in the course of doing business and making a profit.”

The aim of the new rules is to prevent spill sites from being left contaminated for months and sometimes years, Heyman said, noting companies will be required to submit spill response and recovery plans ahead of moving their products.

“Most people subscribe to the polluter pay principle,” he said. “These regulations also require that spill contingency plans be put into place and that recovery plans and reporting plans be implemented in the case of a spill. That’s just reasonable.”

CN Rail said in a statement that it continues to work with the B.C. government and its industry partners on emergency response and preparation plans. The railway transports oil and numerous other products, including grain, across B.C.

“Emergency and spill response preparation and training is an important part of our business,” the statement said. “CN has in place emergency response plans and conducts spill and emergency response training with stakeholders across our network.”

The B.C. Trucking Association said in a statement that it supports the province’s new rules.

“We have been actively engaged in working with the government on the development of these regulations because the safety of our drivers, the public and the environment is our number one priority,” the statement said.

New pollution prevention regulations will hold transport companies and pipeline operators moving petroleum products across British Columbia responsible for spill response and recovery costs. A pipeline at the Westridge Marine Terminal in Burnaby, with an oil tanker in dock on Burrard Inlet.

Last spring, the previous Liberal government amended the Environmental Management Act to include some of the new regulations, but Heyman said he further tweaked the polluter pay regulations to ensure annual public reporting by the government.

He said he also shortened the deadline for operators to put their spill contingency plans in place to one year for trucking companies and six months for railways and pipelines.

The new rules do not apply to marine vessels carrying petroleum products along the B.C. coastline.

“Marine spills are regulated by the federal government but there is some jurisdiction for the province if a marine spill ends up washing onto the shoreline of B.C.’s jurisdiction or the seabed,” Heyman said.

The province is developing a strengthened marine response and recovery program that complements federal spill regulations, he added.

The new regulations come on the one-year anniversary of a fuel spill off B.C.’s central coast, where a tug sank, spilling more than 100,000 litres of diesel into waters near the Great Bear Rainforest.

Marilyn Slett, chief of the Heiltsuk First Nation, said the sinking of the tug, Nathan E. Stewart, has had devastating social and economic impacts on her community.

A valuable fishing area remains closed a year after the spill and many Heiltsuk face the prospect of a second year without revenue from the area’s valuable shellfish species, she said.

by Dirk Meissner, The Canadian Press

Technology to prevent rail disasters is in our hands

Author: Chris Bachmann, Assistant professor, Department of Civil and Environmental Engineering, University of Waterloo

As the trial of the 2013 Lac-Megantic rail disaster begins, new policies and practices that aim to employ better technology could help avoid similar disasters in the future.

The Transportation Safety Board (TSB) found more than 18 distinct causes and contributing factors in the Lac-Megantic derailment investigation, which makes the likelihood of this type of accident seem nearly impossible.

An unattended 74-car freight train carrying crude oil ran away and derailed, resulting in the deadly fire and explosion in Lac-Mégantic, Quebec, in July 2013. (Photo Credit: CBC)

Yet other derailments in Canada involving dangerous goods would soon follow in 2014 in Plaster Rock, N.B. and Clair, Sask., and two incidents in 2015 in Gogama, Ont.

This suggests that we must be mindful of the connection between human interactions and technology and how each will continue to underlie many causes and contributing factors of future incidents.

As a civil engineering professor who researches transportation infrastructure, dangerous goods and risk, I see several new developments and changes to technology and policy that can help to reduce future accidents.

Safer tank car standards

The type of tank cars involved in the Lac-Megantic accident (“Class 111”) were known to be vulnerable to failure, even in low-speed accidents (e.g., Cornwall, Ont. in 1999).

After Lac-Megantic, Canada and the United States developed a more robust tank car standard, Class 117. This new standard features improved puncture resistance, structural strength and fractural resistance.

Despite these improvements, Canadian and U.S. regulations will still allow Class 111 tank cars to be used for the transport of certain dangerous goods until mid-2025.

Even so, Canada accelerated the phase-out of the older Class 111 tank cars from being used for crude oil service in Canada as of Nov. 1, 2016, under Protective Direction 38.

Enhanced braking

In addition to new tank car standards, the U.S. is requiring enhanced braking standards on trains carrying flammable goods.

Any train with a continuous block of 20 tank cars loaded with a flammable liquid, or 35 or more tank cars loaded with a flammable liquid dispersed throughout a train, must have a functioning two-way end-of-train (EOT) device — an electronic unit that can be mounted on the end of a freight train instead of a caboose — or a distributed power (DP) braking system, which spreads braking across different points throughout a train.

Furthermore, any train with 70 or more loaded tank cars containing flammable liquids travelling at speeds greater than 48 km/h must be operated with an electronically controlled pneumatic (ECP) braking system by May 1, 2023.

In short, these technologies enable more controlled braking behaviour through a more responsive and uniform application of brake pressure. Benefits would include shorter stopping distances, lower risks of derailment and lower pile-up effects in the event of a derailment.

More information sharing

Technology also allows more information sharing for better decision-making. For example, Protective Direction No. 36 in Canada requires railways to provide municipalities with dangerous goods reports, including information on the number of unit trains, percentage of railway cars transporting dangerous goods, information on their nature and volume and number of trains.

This information is intended to inform emergency planning and responses.

The U.S. is also requiring more accurate classification of unrefined petroleum-based products to ensure proper classification, packaging and record-keeping through a documented sampling and testing process. This information is to be made available to the Department of Transportation upon request.

Human factors

The technology to prevent rail disasters is in our hands — just as it was in 2013. While these and future technologies are likely to reduce the risks of transporting dangerous goods across Canada and the United States, the interactions between humans and other elements of the system — the “human factors” — will remain predominant.

As we now know in the Lac-Megantic accident, the train carrying 7.7 million litres of crude oil sped toward the small Quebec town at 104 km/h before derailing, killing 47 people in the resulting fire and explosions on July 6, 2013.

Hours before derailing, the train was parked and left running on the main track in Nantes, Que., awaiting departure. But shortly after the engineer parked the train, a locomotive engine caught fire and was turned off by the Nantes fire department.

Without power from the running locomotive engine, air slowly leaked from the air brake system. An insufficient number of handbrakes were applied and the train eventually began rolling downhill on its final journey toward Lac-Megantic.

Some of the causes and contributing factors in the Lac-Megantic rail disaster were not technical failures so much as they were failures of humans to properly interact with technology: To properly maintain a locomotive engine, to have knowledge of interactions between locomotive engines and air brake systems and to properly set and test the effectiveness of handbrakes.

Although technical standards were less stringent in 2013, technology did not fail us. In many of the causes and contributing factors of Lac-Megantic, it is evident that we failed to understand and interact with our technology.

______________________________

This article was originally published on The Conversation. Disclosure information is available on the original site. To read the original article:

https://theconversation.com/technology-to-prevent-rail-disasters-is-https://theconvers

About the Author

Chris Bachmann is an Assistant professor, Department of Civil and Environmental Engineering, University of Waterloo.  His research interests include the interaction between transportation and economics, trade, energy, transportation network resiliency/criticality/robustness/vulnerability, risk, dangerous goods movement, transport economics, transport project and policy evaluation.